非厄米动力学的几何描述:有限秩密度算子中的速度限制

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-05-05 DOI:10.22331/q-2025-05-05-1729
Niklas Hörnedal, Oskar A. Prośniak, Adolfo del Campo, Aurélia Chenu
{"title":"非厄米动力学的几何描述:有限秩密度算子中的速度限制","authors":"Niklas Hörnedal, Oskar A. Prośniak, Adolfo del Campo, Aurélia Chenu","doi":"10.22331/q-2025-05-05-1729","DOIUrl":null,"url":null,"abstract":"Non-Hermitian dynamics in quantum systems preserves the rank of the state density operator. Using this insight, we develop a geometric framework to describe its time evolution. In particular, we identify mutually orthogonal coherent and incoherent directions and provide their physical interpretation. This understanding enables us to optimize the success rate of non-Hermitian driving along prescribed trajectories, with direct relevance to shortcuts to adiabaticity. Next, we explore the geometric interpretation of a speed limit for non-Hermitian Hamiltonians and analyze its tightness. We derive the explicit expression that saturates this bound and illustrate our results with a minimal example of a dissipative qubit.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"18 1","pages":"1729"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometrical description of non-Hermitian dynamics: speed limits in finite rank density operators\",\"authors\":\"Niklas Hörnedal, Oskar A. Prośniak, Adolfo del Campo, Aurélia Chenu\",\"doi\":\"10.22331/q-2025-05-05-1729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Hermitian dynamics in quantum systems preserves the rank of the state density operator. Using this insight, we develop a geometric framework to describe its time evolution. In particular, we identify mutually orthogonal coherent and incoherent directions and provide their physical interpretation. This understanding enables us to optimize the success rate of non-Hermitian driving along prescribed trajectories, with direct relevance to shortcuts to adiabaticity. Next, we explore the geometric interpretation of a speed limit for non-Hermitian Hamiltonians and analyze its tightness. We derive the explicit expression that saturates this bound and illustrate our results with a minimal example of a dissipative qubit.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"18 1\",\"pages\":\"1729\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-05-05-1729\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-05-1729","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子系统中的非厄米动力学保留了态密度算子的秩。利用这一见解,我们开发了一个几何框架来描述它的时间演变。特别是,我们确定相互正交的相干和非相干方向,并提供它们的物理解释。这种理解使我们能够优化沿规定轨迹的非厄米驱动的成功率,这与绝热的捷径直接相关。接下来,我们探索非厄米哈密顿量的速度极限的几何解释,并分析其严密性。我们推导了饱和这个边界的显式表达式,并用耗散量子位的最小例子说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometrical description of non-Hermitian dynamics: speed limits in finite rank density operators
Non-Hermitian dynamics in quantum systems preserves the rank of the state density operator. Using this insight, we develop a geometric framework to describe its time evolution. In particular, we identify mutually orthogonal coherent and incoherent directions and provide their physical interpretation. This understanding enables us to optimize the success rate of non-Hermitian driving along prescribed trajectories, with direct relevance to shortcuts to adiabaticity. Next, we explore the geometric interpretation of a speed limit for non-Hermitian Hamiltonians and analyze its tightness. We derive the explicit expression that saturates this bound and illustrate our results with a minimal example of a dissipative qubit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信