用有限尺寸效应测量量子相对熵

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-05-05 DOI:10.22331/q-2025-05-05-1725
Masahito Hayashi
{"title":"用有限尺寸效应测量量子相对熵","authors":"Masahito Hayashi","doi":"10.22331/q-2025-05-05-1725","DOIUrl":null,"url":null,"abstract":"We study the estimation of relative entropy $D(\\rho\\|\\sigma)$ when $\\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"73 1","pages":"1725"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring quantum relative entropy with finite-size effect\",\"authors\":\"Masahito Hayashi\",\"doi\":\"10.22331/q-2025-05-05-1725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the estimation of relative entropy $D(\\\\rho\\\\|\\\\sigma)$ when $\\\\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\\\\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"73 1\",\"pages\":\"1725\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-05-05-1725\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-05-1725","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当$\sigma$已知时,我们研究相对熵$D(\rho\|\sigma)$的估计。我们证明了cram - rao型界等于相对异向性。当维度$d$固定时,我们的估计器达到cram r- rao类型边界。当维数$d$增加时,也实现了样例复杂度$O(d^2)$。当$\sigma$是完全混合状态时,这个示例复杂性是最佳的。而且,它有时间复杂度$O(d^6 polylog~d)$。我们提出的估计器在这两种情况下都能统一工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring quantum relative entropy with finite-size effect
We study the estimation of relative entropy $D(\rho\|\sigma)$ when $\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信