{"title":"用有限尺寸效应测量量子相对熵","authors":"Masahito Hayashi","doi":"10.22331/q-2025-05-05-1725","DOIUrl":null,"url":null,"abstract":"We study the estimation of relative entropy $D(\\rho\\|\\sigma)$ when $\\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"73 1","pages":"1725"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring quantum relative entropy with finite-size effect\",\"authors\":\"Masahito Hayashi\",\"doi\":\"10.22331/q-2025-05-05-1725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the estimation of relative entropy $D(\\\\rho\\\\|\\\\sigma)$ when $\\\\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\\\\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"73 1\",\"pages\":\"1725\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-05-05-1725\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-05-1725","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Measuring quantum relative entropy with finite-size effect
We study the estimation of relative entropy $D(\rho\|\sigma)$ when $\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.