{"title":"结合电子-正电子相关极化势的密度泛函方法在正电子结合碳氢化合物和水团簇中的应用","authors":"Daisuke Yoshida, Toshiyuki Takayanagi, Yukiumi Kita, Tomomi Shimazaki, Masanori Tachikawa","doi":"10.1039/d5cp00893j","DOIUrl":null,"url":null,"abstract":"We present benchmark calculations using the electron-positron correlation-polarization potential (CPP) method with the atomic polarizability model to evaluate the positron affinities of key categories of polyatomic hydrocarbons and water microclusters. The universal model parameter of the generalized gradient approximation for CPP is optimized based on the experimentally measured positron affinities of the representative hydrocarbon molecules. Using this method, the positron affinities and positron binding features of water clusters up to the hexamer are investigated. The present CPP calculations revealed reasonable size-dependence on positron binding energies and conformer-dependent properties for each cluster size for these water clusters. The bound positrons are also trapped internally within cavities of the three-dimensional water clusters, similar to the behavior of bound excess electrons in water cluster anions. However, since the positronic binding energies are smaller than the electronic binding energies in water cluster anions, the bound positrons exhibit delocalized features extending into the electronegative oxygen atoms of the water molecules acting as the multiple hydrogen donor. Such behavior differs from the water cluster anions, resulting in isomeric conformational dependence.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of the density functional method combined with the electron-positron correlation-polarization potential to positron binding to hydrocarbons and water clusters\",\"authors\":\"Daisuke Yoshida, Toshiyuki Takayanagi, Yukiumi Kita, Tomomi Shimazaki, Masanori Tachikawa\",\"doi\":\"10.1039/d5cp00893j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present benchmark calculations using the electron-positron correlation-polarization potential (CPP) method with the atomic polarizability model to evaluate the positron affinities of key categories of polyatomic hydrocarbons and water microclusters. The universal model parameter of the generalized gradient approximation for CPP is optimized based on the experimentally measured positron affinities of the representative hydrocarbon molecules. Using this method, the positron affinities and positron binding features of water clusters up to the hexamer are investigated. The present CPP calculations revealed reasonable size-dependence on positron binding energies and conformer-dependent properties for each cluster size for these water clusters. The bound positrons are also trapped internally within cavities of the three-dimensional water clusters, similar to the behavior of bound excess electrons in water cluster anions. However, since the positronic binding energies are smaller than the electronic binding energies in water cluster anions, the bound positrons exhibit delocalized features extending into the electronegative oxygen atoms of the water molecules acting as the multiple hydrogen donor. Such behavior differs from the water cluster anions, resulting in isomeric conformational dependence.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp00893j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00893j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Applications of the density functional method combined with the electron-positron correlation-polarization potential to positron binding to hydrocarbons and water clusters
We present benchmark calculations using the electron-positron correlation-polarization potential (CPP) method with the atomic polarizability model to evaluate the positron affinities of key categories of polyatomic hydrocarbons and water microclusters. The universal model parameter of the generalized gradient approximation for CPP is optimized based on the experimentally measured positron affinities of the representative hydrocarbon molecules. Using this method, the positron affinities and positron binding features of water clusters up to the hexamer are investigated. The present CPP calculations revealed reasonable size-dependence on positron binding energies and conformer-dependent properties for each cluster size for these water clusters. The bound positrons are also trapped internally within cavities of the three-dimensional water clusters, similar to the behavior of bound excess electrons in water cluster anions. However, since the positronic binding energies are smaller than the electronic binding energies in water cluster anions, the bound positrons exhibit delocalized features extending into the electronegative oxygen atoms of the water molecules acting as the multiple hydrogen donor. Such behavior differs from the water cluster anions, resulting in isomeric conformational dependence.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.