{"title":"光碱FR-1V/hCRABPII中单残基取代调控的质子转移动力学","authors":"Jiajia Meng, Gaoshang Li, Xiaolu Bai, Siteng Zhao, Jin Dai, Yin Song, Xubiao Peng, Qing Zhao","doi":"10.1039/d5cp00710k","DOIUrl":null,"url":null,"abstract":"Fluorescent proteins with large Stokes shifts have become indispensable in biological imaging due to their improved signal-to-noise ratio and reduced self-absorption. While traditional photoacid systems have optimization limitations, photobasic fluorescent proteins provide a promising alternative <em>via</em> novel excited-state proton transfer (ESPT) mechanisms. We study how single amino acid variations affect the photophysical properties of FR-1V/hCRABPII <em>via</em> microenvironment regulation. We used femtosecond time-resolved transient absorption spectroscopy (fs-TA) to compare two mutants: M3/FR-1V (K40E) and M15/FR-1V (K40H). M3/FR-1V demonstrated multi-component dynamics, including rapid ESPT and subsequent conformational relaxation, resulting in efficient fluorescence channels. In contrast, M15/FR-1V exhibits rapid excited-state decay, slower ESPT, and enhanced nonradiative deactivation. Global fitting analysis identified two competitive transfer channels: a favorable conformation that promotes protonated Schiff base formation and radiative transition, and an unfavorable conformation that inhibits proton transfer and non-radiative relaxation. This study offers new molecularlevel insights into the amino acid regulation of ESPT networks in photobasic fluorescent proteins, laying the groundwork for the rational design of next-generation fluorescent imaging tools.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"99 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton transfer kinetics modulated by single-residue substitution in photobasic FR-1V/hCRABPII\",\"authors\":\"Jiajia Meng, Gaoshang Li, Xiaolu Bai, Siteng Zhao, Jin Dai, Yin Song, Xubiao Peng, Qing Zhao\",\"doi\":\"10.1039/d5cp00710k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescent proteins with large Stokes shifts have become indispensable in biological imaging due to their improved signal-to-noise ratio and reduced self-absorption. While traditional photoacid systems have optimization limitations, photobasic fluorescent proteins provide a promising alternative <em>via</em> novel excited-state proton transfer (ESPT) mechanisms. We study how single amino acid variations affect the photophysical properties of FR-1V/hCRABPII <em>via</em> microenvironment regulation. We used femtosecond time-resolved transient absorption spectroscopy (fs-TA) to compare two mutants: M3/FR-1V (K40E) and M15/FR-1V (K40H). M3/FR-1V demonstrated multi-component dynamics, including rapid ESPT and subsequent conformational relaxation, resulting in efficient fluorescence channels. In contrast, M15/FR-1V exhibits rapid excited-state decay, slower ESPT, and enhanced nonradiative deactivation. Global fitting analysis identified two competitive transfer channels: a favorable conformation that promotes protonated Schiff base formation and radiative transition, and an unfavorable conformation that inhibits proton transfer and non-radiative relaxation. This study offers new molecularlevel insights into the amino acid regulation of ESPT networks in photobasic fluorescent proteins, laying the groundwork for the rational design of next-generation fluorescent imaging tools.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp00710k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00710k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Proton transfer kinetics modulated by single-residue substitution in photobasic FR-1V/hCRABPII
Fluorescent proteins with large Stokes shifts have become indispensable in biological imaging due to their improved signal-to-noise ratio and reduced self-absorption. While traditional photoacid systems have optimization limitations, photobasic fluorescent proteins provide a promising alternative via novel excited-state proton transfer (ESPT) mechanisms. We study how single amino acid variations affect the photophysical properties of FR-1V/hCRABPII via microenvironment regulation. We used femtosecond time-resolved transient absorption spectroscopy (fs-TA) to compare two mutants: M3/FR-1V (K40E) and M15/FR-1V (K40H). M3/FR-1V demonstrated multi-component dynamics, including rapid ESPT and subsequent conformational relaxation, resulting in efficient fluorescence channels. In contrast, M15/FR-1V exhibits rapid excited-state decay, slower ESPT, and enhanced nonradiative deactivation. Global fitting analysis identified two competitive transfer channels: a favorable conformation that promotes protonated Schiff base formation and radiative transition, and an unfavorable conformation that inhibits proton transfer and non-radiative relaxation. This study offers new molecularlevel insights into the amino acid regulation of ESPT networks in photobasic fluorescent proteins, laying the groundwork for the rational design of next-generation fluorescent imaging tools.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.