{"title":"通过生物矿化对微生物影响的腐蚀抑制的基本理解:一个重要的回顾","authors":"Meiying Lv, Min Du, Xingchuan Zhao, Yongxu Du","doi":"10.1080/10643389.2025.2469860","DOIUrl":null,"url":null,"abstract":"Corrosion is a pervasive issue that poses a significant risk across various industries, causing economic losses and safety hazards. Traditional corrosion control technologies may have some limitations in application, such as high cost, cumbersome construction, and even environmental pollution. Biomineralization, as an emerging anti-corrosion strategy, is effective and eco-friendly, demonstrating <i>in situ</i> self-healing activity. This review provides a comprehensive overview of recent advances in utilizing this novel strategy for corrosion inhibition and the mechanisms involved. Furthermore, the different types and functional properties of typical biominerals are discussed, as well as the potential applications of mineralized bacteria and species interactions. Lastly, this review outlines current challenges in this field, such as species selection, microscale manipulation, large-scale applications and biosafety, and proposes future directions for further research, offering valuable insights into the evolving landscape of biomineralization technology in corrosion protection.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"1 1","pages":"1-23"},"PeriodicalIF":11.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental understanding of microbiologically influenced corrosion inhibition via biomineralization: A critical review\",\"authors\":\"Meiying Lv, Min Du, Xingchuan Zhao, Yongxu Du\",\"doi\":\"10.1080/10643389.2025.2469860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corrosion is a pervasive issue that poses a significant risk across various industries, causing economic losses and safety hazards. Traditional corrosion control technologies may have some limitations in application, such as high cost, cumbersome construction, and even environmental pollution. Biomineralization, as an emerging anti-corrosion strategy, is effective and eco-friendly, demonstrating <i>in situ</i> self-healing activity. This review provides a comprehensive overview of recent advances in utilizing this novel strategy for corrosion inhibition and the mechanisms involved. Furthermore, the different types and functional properties of typical biominerals are discussed, as well as the potential applications of mineralized bacteria and species interactions. Lastly, this review outlines current challenges in this field, such as species selection, microscale manipulation, large-scale applications and biosafety, and proposes future directions for further research, offering valuable insights into the evolving landscape of biomineralization technology in corrosion protection.\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"1 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2025.2469860\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2025.2469860","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fundamental understanding of microbiologically influenced corrosion inhibition via biomineralization: A critical review
Corrosion is a pervasive issue that poses a significant risk across various industries, causing economic losses and safety hazards. Traditional corrosion control technologies may have some limitations in application, such as high cost, cumbersome construction, and even environmental pollution. Biomineralization, as an emerging anti-corrosion strategy, is effective and eco-friendly, demonstrating in situ self-healing activity. This review provides a comprehensive overview of recent advances in utilizing this novel strategy for corrosion inhibition and the mechanisms involved. Furthermore, the different types and functional properties of typical biominerals are discussed, as well as the potential applications of mineralized bacteria and species interactions. Lastly, this review outlines current challenges in this field, such as species selection, microscale manipulation, large-scale applications and biosafety, and proposes future directions for further research, offering valuable insights into the evolving landscape of biomineralization technology in corrosion protection.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.