Avantika Lal, Laura Gunsalus, Anay Gupta, Tommaso Biancalani, Gokcen Eraslan
{"title":"测谎仪:用于系统评估合成调控DNA元件的软件框架","authors":"Avantika Lal, Laura Gunsalus, Anay Gupta, Tommaso Biancalani, Gokcen Eraslan","doi":"10.1186/s13059-025-03584-9","DOIUrl":null,"url":null,"abstract":"The design of regulatory elements is pivotal in gene and cell therapy, where DNA sequences are engineered to drive elevated and cell-type specific expression. However, the systematic assessment of synthetic DNA sequences without robust metrics and easy-to-use software remains challenging. Here, we introduce Polygraph, a Python framework that evaluates synthetic DNA elements, based on features like diversity, motif and k-mer composition, similarity to endogenous sequences, and screening with predictive and foundational models. Polygraph is the first instrument for assessing synthetic regulatory sequences, enabling faster progress in therapeutic interventions and improving our understanding of gene regulatory mechanisms.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polygraph: a software framework for the systematic assessment of synthetic regulatory DNA elements\",\"authors\":\"Avantika Lal, Laura Gunsalus, Anay Gupta, Tommaso Biancalani, Gokcen Eraslan\",\"doi\":\"10.1186/s13059-025-03584-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of regulatory elements is pivotal in gene and cell therapy, where DNA sequences are engineered to drive elevated and cell-type specific expression. However, the systematic assessment of synthetic DNA sequences without robust metrics and easy-to-use software remains challenging. Here, we introduce Polygraph, a Python framework that evaluates synthetic DNA elements, based on features like diversity, motif and k-mer composition, similarity to endogenous sequences, and screening with predictive and foundational models. Polygraph is the first instrument for assessing synthetic regulatory sequences, enabling faster progress in therapeutic interventions and improving our understanding of gene regulatory mechanisms.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03584-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03584-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Polygraph: a software framework for the systematic assessment of synthetic regulatory DNA elements
The design of regulatory elements is pivotal in gene and cell therapy, where DNA sequences are engineered to drive elevated and cell-type specific expression. However, the systematic assessment of synthetic DNA sequences without robust metrics and easy-to-use software remains challenging. Here, we introduce Polygraph, a Python framework that evaluates synthetic DNA elements, based on features like diversity, motif and k-mer composition, similarity to endogenous sequences, and screening with predictive and foundational models. Polygraph is the first instrument for assessing synthetic regulatory sequences, enabling faster progress in therapeutic interventions and improving our understanding of gene regulatory mechanisms.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.