{"title":"Kawahara方程拟线性扰动的精确可控性","authors":"Yanpeng Jin, Ying Fu, Xiaoping Wu","doi":"10.1002/mma.10789","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper is devoted to studying the exact controllability for the Kawahara equation under the influence of quasilinear perturbations for sufficiently small data on the circle with localized control, the nonlinearities containing up to five space derivatives and having a Hamiltonian structure at the space derivatives of the highest order. Firstly, we conjugate the associated linearized operator to a time-dependent variable coefficient operator up to a bounded remainder. The major difficulties come from five space derivatives and the coupling of the coefficient of the highest order term with the coefficients of other terms. The strategy adopted is to look for appropriate transformations, which are reversible and satisfy the sharp bounds for the reducibility. Then, from the observability and controllability of the corresponding linear control problem, the existence of the right inverse for the linearized operator is verified. Finally, the application of the Nash–Moser–Hörmander theorem implies the exact controllability for the Kawahara equation with the quasilinear perturbations.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 8","pages":"9160-9176"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Controllability for the Quasilinear Perturbations of the Kawahara Equation\",\"authors\":\"Yanpeng Jin, Ying Fu, Xiaoping Wu\",\"doi\":\"10.1002/mma.10789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper is devoted to studying the exact controllability for the Kawahara equation under the influence of quasilinear perturbations for sufficiently small data on the circle with localized control, the nonlinearities containing up to five space derivatives and having a Hamiltonian structure at the space derivatives of the highest order. Firstly, we conjugate the associated linearized operator to a time-dependent variable coefficient operator up to a bounded remainder. The major difficulties come from five space derivatives and the coupling of the coefficient of the highest order term with the coefficients of other terms. The strategy adopted is to look for appropriate transformations, which are reversible and satisfy the sharp bounds for the reducibility. Then, from the observability and controllability of the corresponding linear control problem, the existence of the right inverse for the linearized operator is verified. Finally, the application of the Nash–Moser–Hörmander theorem implies the exact controllability for the Kawahara equation with the quasilinear perturbations.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 8\",\"pages\":\"9160-9176\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10789\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10789","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Exact Controllability for the Quasilinear Perturbations of the Kawahara Equation
This paper is devoted to studying the exact controllability for the Kawahara equation under the influence of quasilinear perturbations for sufficiently small data on the circle with localized control, the nonlinearities containing up to five space derivatives and having a Hamiltonian structure at the space derivatives of the highest order. Firstly, we conjugate the associated linearized operator to a time-dependent variable coefficient operator up to a bounded remainder. The major difficulties come from five space derivatives and the coupling of the coefficient of the highest order term with the coefficients of other terms. The strategy adopted is to look for appropriate transformations, which are reversible and satisfy the sharp bounds for the reducibility. Then, from the observability and controllability of the corresponding linear control problem, the existence of the right inverse for the linearized operator is verified. Finally, the application of the Nash–Moser–Hörmander theorem implies the exact controllability for the Kawahara equation with the quasilinear perturbations.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.