D. Choudhuri, K. Saoudi
求助PDF
{"title":"无Ambrosetti-Rabinowitz (AR)条件下奇异p(x)- laplace方程的无穷多解","authors":"D. Choudhuri, K. Saoudi","doi":"10.1002/mma.10760","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We establish the existence of infinitely many nonnegative solutions to the following nonlocal elliptic partial differential equation with singularity: \n\n </p><div><span><!--FIGURE-->\n <span></span><math>\n <semantics>\n <mrow>\n <mtable>\n <mtr>\n <mtd>\n <msubsup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msubsup>\n <mi>u</mi>\n </mtd>\n <mtd>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>γ</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n </mrow>\n </mfrac>\n <mo>+</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>u</mi>\n <mo>)</mo>\n <mspace></mspace>\n <mtext>in</mtext>\n <mspace></mspace>\n <mi>Ω</mi>\n <mo>,</mo>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <mi>u</mi>\n </mtd>\n <mtd>\n <mo>=</mo>\n <mn>0</mn>\n <mspace></mspace>\n <mtext>in</mtext>\n <mspace></mspace>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n <mo>∖</mo>\n <mi>Ω</mi>\n <mo>,</mo>\n </mtd>\n </mtr>\n </mtable>\n </mrow>\n <annotation>$$ {\\displaystyle \\begin{array}{cc}\\hfill {\\left(-\\Delta \\right)}_{p\\left(\\cdotp \\right)}&#x0005E;su&amp; &#x0003D;\\frac{\\lambda }{{\\left&#x0007C;u\\right&#x0007C;}&#x0005E;{\\gamma (x)-1}u}&#x0002B;f\\left(x,u\\right)\\kern0.3em \\mathrm{in}\\kern0.3em \\Omega, \\hfill \\\\ {}\\hfill u&amp; &#x0003D;0\\kern0.3em \\mathrm{in}\\kern0.3em {\\mathbb{R}}&#x0005E;N\\setminus \\Omega, \\hfill \\end{array}} $$</annotation>\n </semantics></math>\n </span><span></span></div>where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ \\Omega \\subset {\\mathbb{R}}&#x0005E;N $$</annotation>\n </semantics></math> is a smooth bounded domain with \n<span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$$ N\\ge 2 $$</annotation>\n </semantics></math>. The parameters in the equation are as follows: \n<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\lambda &gt;0 $$</annotation>\n </semantics></math> is a positive constant, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$$ s\\in \\left(0,1\\right) $$</annotation>\n </semantics></math> is a fixed parameter, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>:</mo>\n <mover>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>→</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\gamma :\\overline{\\Omega}\\to \\left(0,1\\right) $$</annotation>\n </semantics></math> is a continuous function, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>></mo>\n <mi>s</mi>\n <mi>p</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ N&gt; sp\\left(x,y\\right) $$</annotation>\n </semantics></math> for all \n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mover>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>×</mo>\n <mover>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\left(x,y\\right)\\in \\overline{\\Omega}\\times \\overline{\\Omega} $$</annotation>\n </semantics></math>, and \n<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {\\left(-\\Delta \\right)}_{p\\left(\\cdotp \\right)}&#x0005E;s $$</annotation>\n </semantics></math> is the fractional \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$$ p\\left(\\cdotp \\right) $$</annotation>\n </semantics></math>-Laplacian operator with a variable exponent. The nonlinearity \n<span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f\\left(x,u\\right) $$</annotation>\n </semantics></math> is a <i>Carathéodory</i> function satisfying \n<span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ f\\ge 0 $$</annotation>\n </semantics></math> and certain growth conditions. Furthermore, we establish a uniform \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mo>(</mo>\n <mover>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {L}&#x0005E;{\\infty}\\left(\\overline{\\Omega}\\right) $$</annotation>\n </semantics></math> estimate for the solution(s) using the Moser iteration technique.\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 8","pages":"8870-8883"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely Many Solutions for Singular \\np(x)-Laplacian Equation Without the Ambrosetti–Rabinowitz (AR) Condition\",\"authors\":\"D. Choudhuri, K. Saoudi\",\"doi\":\"10.1002/mma.10760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We establish the existence of infinitely many nonnegative solutions to the following nonlocal elliptic partial differential equation with singularity: \\n\\n </p><div><span><!--FIGURE-->\\n <span></span><math>\\n <semantics>\\n <mrow>\\n <mtable>\\n <mtr>\\n <mtd>\\n <msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>Δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mo>·</mo>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n </msubsup>\\n <mi>u</mi>\\n </mtd>\\n <mtd>\\n <mo>=</mo>\\n <mfrac>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mi>γ</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n </mrow>\\n </mfrac>\\n <mo>+</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n <mspace></mspace>\\n <mtext>in</mtext>\\n <mspace></mspace>\\n <mi>Ω</mi>\\n <mo>,</mo>\\n </mtd>\\n </mtr>\\n <mtr>\\n <mtd>\\n <mi>u</mi>\\n </mtd>\\n <mtd>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mspace></mspace>\\n <mtext>in</mtext>\\n <mspace></mspace>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msup>\\n <mo>∖</mo>\\n <mi>Ω</mi>\\n <mo>,</mo>\\n </mtd>\\n </mtr>\\n </mtable>\\n </mrow>\\n <annotation>$$ {\\\\displaystyle \\\\begin{array}{cc}\\\\hfill {\\\\left(-\\\\Delta \\\\right)}_{p\\\\left(\\\\cdotp \\\\right)}&#x0005E;su&amp; &#x0003D;\\\\frac{\\\\lambda }{{\\\\left&#x0007C;u\\\\right&#x0007C;}&#x0005E;{\\\\gamma (x)-1}u}&#x0002B;f\\\\left(x,u\\\\right)\\\\kern0.3em \\\\mathrm{in}\\\\kern0.3em \\\\Omega, \\\\hfill \\\\\\\\ {}\\\\hfill u&amp; &#x0003D;0\\\\kern0.3em \\\\mathrm{in}\\\\kern0.3em {\\\\mathbb{R}}&#x0005E;N\\\\setminus \\\\Omega, \\\\hfill \\\\end{array}} $$</annotation>\\n </semantics></math>\\n </span><span></span></div>where \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Ω</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ \\\\Omega \\\\subset {\\\\mathbb{R}}&#x0005E;N $$</annotation>\\n </semantics></math> is a smooth bounded domain with \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$$ N\\\\ge 2 $$</annotation>\\n </semantics></math>. The parameters in the equation are as follows: \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ \\\\lambda &gt;0 $$</annotation>\\n </semantics></math> is a positive constant, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ s\\\\in \\\\left(0,1\\\\right) $$</annotation>\\n </semantics></math> is a fixed parameter, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>:</mo>\\n <mover>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n <mo>→</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\gamma :\\\\overline{\\\\Omega}\\\\to \\\\left(0,1\\\\right) $$</annotation>\\n </semantics></math> is a continuous function, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>></mo>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ N&gt; sp\\\\left(x,y\\\\right) $$</annotation>\\n </semantics></math> for all \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n <mo>∈</mo>\\n <mover>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n <mo>×</mo>\\n <mover>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\left(x,y\\\\right)\\\\in \\\\overline{\\\\Omega}\\\\times \\\\overline{\\\\Omega} $$</annotation>\\n </semantics></math>, and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>Δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mo>·</mo>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\Delta \\\\right)}_{p\\\\left(\\\\cdotp \\\\right)}&#x0005E;s $$</annotation>\\n </semantics></math> is the fractional \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mo>·</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ p\\\\left(\\\\cdotp \\\\right) $$</annotation>\\n </semantics></math>-Laplacian operator with a variable exponent. The nonlinearity \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ f\\\\left(x,u\\\\right) $$</annotation>\\n </semantics></math> is a <i>Carathéodory</i> function satisfying \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ f\\\\ge 0 $$</annotation>\\n </semantics></math> and certain growth conditions. Furthermore, we establish a uniform \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msup>\\n <mo>(</mo>\\n <mover>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {L}&#x0005E;{\\\\infty}\\\\left(\\\\overline{\\\\Omega}\\\\right) $$</annotation>\\n </semantics></math> estimate for the solution(s) using the Moser iteration technique.\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 8\",\"pages\":\"8870-8883\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10760\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10760","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
引用
批量引用