有限区间上参数化调和凸函数的量子积分不等式及其相关应用

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Ahsan Fareed Shah, Salah Mahmoud Boulaaras, Patricia J. Y. Wong, Muhammad Shoaib Saleem, Muhammad Umair Shahzad
{"title":"有限区间上参数化调和凸函数的量子积分不等式及其相关应用","authors":"Ahsan Fareed Shah,&nbsp;Salah Mahmoud Boulaaras,&nbsp;Patricia J. Y. Wong,&nbsp;Muhammad Shoaib Saleem,&nbsp;Muhammad Umair Shahzad","doi":"10.1002/mma.10792","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work introduces a new concept, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>-harmonically \n<span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n </mrow>\n <annotation>$$ \\gamma $$</annotation>\n </semantics></math>-convex function, which covers some important variants of harmonically convex functions previously presented in the literature. We have established well-known Hermite-Hadamard–type integral inequalities for this newly defined convexity using generalized quantum integrals. In addition, we discussed this well-known inequality on finite intervals using quantum integrals. Finally, we validated our unique findings using some examples, such as Python-programmed graphs and Mathematica.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 8","pages":"9194-9206"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Integral Inequalities Via Different Variants of Parameterized Harmonically Convex Functions on Finite Intervals With Related Applications\",\"authors\":\"Ahsan Fareed Shah,&nbsp;Salah Mahmoud Boulaaras,&nbsp;Patricia J. Y. Wong,&nbsp;Muhammad Shoaib Saleem,&nbsp;Muhammad Umair Shahzad\",\"doi\":\"10.1002/mma.10792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This work introduces a new concept, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math>-harmonically \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n </mrow>\\n <annotation>$$ \\\\gamma $$</annotation>\\n </semantics></math>-convex function, which covers some important variants of harmonically convex functions previously presented in the literature. We have established well-known Hermite-Hadamard–type integral inequalities for this newly defined convexity using generalized quantum integrals. In addition, we discussed this well-known inequality on finite intervals using quantum integrals. Finally, we validated our unique findings using some examples, such as Python-programmed graphs and Mathematica.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 8\",\"pages\":\"9194-9206\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10792\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10792","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一个新的概念,k $$ k $$ -调和γ $$ \gamma $$ -凸函数,它涵盖了以前在文献中提出的调和凸函数的一些重要变体。对于这个新定义的凸性,我们用广义量子积分建立了著名的hermite - hadamard型积分不等式。此外,我们用量子积分讨论了这个著名的有限区间不等式。最后,我们使用一些示例验证了我们的独特发现,例如python编程的图形和Mathematica。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Integral Inequalities Via Different Variants of Parameterized Harmonically Convex Functions on Finite Intervals With Related Applications

This work introduces a new concept, k $$ k $$ -harmonically γ $$ \gamma $$ -convex function, which covers some important variants of harmonically convex functions previously presented in the literature. We have established well-known Hermite-Hadamard–type integral inequalities for this newly defined convexity using generalized quantum integrals. In addition, we discussed this well-known inequality on finite intervals using quantum integrals. Finally, we validated our unique findings using some examples, such as Python-programmed graphs and Mathematica.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信