{"title":"任意锥上的混合多目标不可微对称对偶规划问题","authors":"Balram, Shubham Jaiswal, Ramu Dubey","doi":"10.1002/mma.10762","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the present article, we formulate mixed-type multiobjective nondifferentiable symmetric duality over cone and derive the duality results under \n<span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n </mrow>\n <annotation>$$ K $$</annotation>\n </semantics></math>-\n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(C,\\rho, d\\right) $$</annotation>\n </semantics></math>-convex and \n<span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n </mrow>\n <annotation>$$ K $$</annotation>\n </semantics></math>-\n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(C,\\rho, d\\right) $$</annotation>\n </semantics></math>-pseudoconvex. Also, we give non-trivial examples of \n<span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n </mrow>\n <annotation>$$ K $$</annotation>\n </semantics></math>-\n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(C,\\rho, d\\right) $$</annotation>\n </semantics></math>-convex and \n<span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n </mrow>\n <annotation>$$ K $$</annotation>\n </semantics></math>-\n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(C,\\rho, d\\right) $$</annotation>\n </semantics></math>-pseudoconvex and show that every \n<span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n </mrow>\n <annotation>$$ K $$</annotation>\n </semantics></math>-\n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(C,\\rho, d\\right) $$</annotation>\n </semantics></math>-convex need not be \n<span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n </mrow>\n <annotation>$$ K $$</annotation>\n </semantics></math>-\n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(C,\\rho, d\\right) $$</annotation>\n </semantics></math>-pseudoconvex. We give non-trivial examples of some basic definitions used in this research area. Also, some graphs are used to understand the information better. The outcomes we obtained expand upon several earlier discoveries in the field.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 8","pages":"8890-8902"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Type Multiobjective Nondifferentiable Symmetric Duality Programming Problem Over Arbitrary Cones\",\"authors\":\"Balram, Shubham Jaiswal, Ramu Dubey\",\"doi\":\"10.1002/mma.10762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the present article, we formulate mixed-type multiobjective nondifferentiable symmetric duality over cone and derive the duality results under \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$$ K $$</annotation>\\n </semantics></math>-\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>ρ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(C,\\\\rho, d\\\\right) $$</annotation>\\n </semantics></math>-convex and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$$ K $$</annotation>\\n </semantics></math>-\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>ρ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(C,\\\\rho, d\\\\right) $$</annotation>\\n </semantics></math>-pseudoconvex. Also, we give non-trivial examples of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$$ K $$</annotation>\\n </semantics></math>-\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>ρ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(C,\\\\rho, d\\\\right) $$</annotation>\\n </semantics></math>-convex and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$$ K $$</annotation>\\n </semantics></math>-\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>ρ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(C,\\\\rho, d\\\\right) $$</annotation>\\n </semantics></math>-pseudoconvex and show that every \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$$ K $$</annotation>\\n </semantics></math>-\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>ρ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(C,\\\\rho, d\\\\right) $$</annotation>\\n </semantics></math>-convex need not be \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$$ K $$</annotation>\\n </semantics></math>-\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>ρ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(C,\\\\rho, d\\\\right) $$</annotation>\\n </semantics></math>-pseudoconvex. We give non-trivial examples of some basic definitions used in this research area. Also, some graphs are used to understand the information better. The outcomes we obtained expand upon several earlier discoveries in the field.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 8\",\"pages\":\"8890-8902\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10762\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10762","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Mixed-Type Multiobjective Nondifferentiable Symmetric Duality Programming Problem Over Arbitrary Cones
In the present article, we formulate mixed-type multiobjective nondifferentiable symmetric duality over cone and derive the duality results under
-
-convex and
-
-pseudoconvex. Also, we give non-trivial examples of
-
-convex and
-
-pseudoconvex and show that every
-
-convex need not be
-
-pseudoconvex. We give non-trivial examples of some basic definitions used in this research area. Also, some graphs are used to understand the information better. The outcomes we obtained expand upon several earlier discoveries in the field.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.