旋转表面上磁测地线流的分岔

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
I.F. Kobtsev, E.A. Kudryavtseva
{"title":"旋转表面上磁测地线流的分岔","authors":"I.F. Kobtsev,&nbsp;E.A. Kudryavtseva","doi":"10.1134/S1061920825600084","DOIUrl":null,"url":null,"abstract":"<p> We study magnetic geodesic flows invariant under rotations on the 2-sphere. The dynamical system is given by a generic pair of functions <span>\\((f,\\Lambda)\\)</span> in one variable. The topology of the Liouville fibration of the given integrable system near its singular orbits and singular fibers is described. The types of these singularities are computed. The topology of the Liouville fibration on regular 3-dimensional isoenergy manifolds is described by computing the Fomenko–Zieschang invariant. All possible bifurcation diagrams of the momentum mappings of such integrable systems are described. It is shown that the bifurcation diagram consists of two curves in the <span>\\((h,k)\\)</span>-plane. One of these curves is a line segment <span>\\(h=0\\)</span>, and the other lies in the half-plane <span>\\(h\\ge0\\)</span> and can be obtained from the curve <span>\\((a:-1:k) = (f:\\Lambda:1)^*\\)</span> projectively dual to the curve <span>\\((f:\\Lambda:1)\\)</span> by the transformation <span>\\((a:-1:k)\\mapsto(a^2/2,k)=(h,k)\\)</span>. </p><p> <b> DOI</b> 10.1134/S1061920825600084 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"65 - 96"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations of Magnetic Geodesic Flows on Surfaces of Revolution\",\"authors\":\"I.F. Kobtsev,&nbsp;E.A. Kudryavtseva\",\"doi\":\"10.1134/S1061920825600084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study magnetic geodesic flows invariant under rotations on the 2-sphere. The dynamical system is given by a generic pair of functions <span>\\\\((f,\\\\Lambda)\\\\)</span> in one variable. The topology of the Liouville fibration of the given integrable system near its singular orbits and singular fibers is described. The types of these singularities are computed. The topology of the Liouville fibration on regular 3-dimensional isoenergy manifolds is described by computing the Fomenko–Zieschang invariant. All possible bifurcation diagrams of the momentum mappings of such integrable systems are described. It is shown that the bifurcation diagram consists of two curves in the <span>\\\\((h,k)\\\\)</span>-plane. One of these curves is a line segment <span>\\\\(h=0\\\\)</span>, and the other lies in the half-plane <span>\\\\(h\\\\ge0\\\\)</span> and can be obtained from the curve <span>\\\\((a:-1:k) = (f:\\\\Lambda:1)^*\\\\)</span> projectively dual to the curve <span>\\\\((f:\\\\Lambda:1)\\\\)</span> by the transformation <span>\\\\((a:-1:k)\\\\mapsto(a^2/2,k)=(h,k)\\\\)</span>. </p><p> <b> DOI</b> 10.1134/S1061920825600084 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 1\",\"pages\":\"65 - 96\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920825600084\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920825600084","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了磁场测地线在2球旋转下的不变性。动力系统由一对单变量的泛型函数\((f,\Lambda)\)给出。描述了给定可积系统在其奇异轨道和奇异纤维附近的Liouville纤维的拓扑结构。计算了这些奇异点的类型。通过计算Fomenko-Zieschang不变量,描述了正则三维等能流形上Liouville振动的拓扑结构。描述了这类可积系统动量映射的所有可能的分岔图。结果表明,该分岔图由\((h,k)\) -平面上的两条曲线组成。其中一条曲线为线段\(h=0\),另一条曲线位于半平面\(h\ge0\),可以通过变换\((a:-1:k)\mapsto(a^2/2,k)=(h,k)\)从曲线\((a:-1:k) = (f:\Lambda:1)^*\)投影对偶到曲线\((f:\Lambda:1)\)得到。Doi 10.1134/ s1061920825600084
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcations of Magnetic Geodesic Flows on Surfaces of Revolution

We study magnetic geodesic flows invariant under rotations on the 2-sphere. The dynamical system is given by a generic pair of functions \((f,\Lambda)\) in one variable. The topology of the Liouville fibration of the given integrable system near its singular orbits and singular fibers is described. The types of these singularities are computed. The topology of the Liouville fibration on regular 3-dimensional isoenergy manifolds is described by computing the Fomenko–Zieschang invariant. All possible bifurcation diagrams of the momentum mappings of such integrable systems are described. It is shown that the bifurcation diagram consists of two curves in the \((h,k)\)-plane. One of these curves is a line segment \(h=0\), and the other lies in the half-plane \(h\ge0\) and can be obtained from the curve \((a:-1:k) = (f:\Lambda:1)^*\) projectively dual to the curve \((f:\Lambda:1)\) by the transformation \((a:-1:k)\mapsto(a^2/2,k)=(h,k)\).

DOI 10.1134/S1061920825600084

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信