{"title":"水翼特征厚度对间隙涡空化蚀蚀风险分布的影响及其机理","authors":"Jia-le Huang, Huai-yu Cheng, Yan-tao Cao, Bin Ji","doi":"10.1007/s42241-025-0014-5","DOIUrl":null,"url":null,"abstract":"<div><p>To clarify the influence of the hydrofoil characteristic thickness on the distribution characteristics and mechanisms of clearance cavitation erosion risk, a large eddy simulation (LES) is conducted to study the clearance cavitating flow around NACA0012 and NACA0024 hydrofoils under identical conditions. The study predicts cavitation erosion risk using three methods: The erosive power method (EPM), the improved gray level method (IGLM) and the energy conservation method (ECM). The numerical results are in good agreement with the experiment data and the ECM is applied due to its simplicity in parameter adjustment and low sensitivity. The results indicate that the characteristic thickness significantly influences the flow field, leading to variations in the position and intensity of cavitation collapse, ultimately resulting in notable differences in cavitation erosion risk distribution. The high cavitation erosion risk region on the clearance surface of NACA0012 is concentrated around the midsection, while it is concentrated in the upstream region for the NACA0024, with a lower frequency of extreme events. Tip separation vortex (TSV) cavitation is the main cause of the differences in cavitation erosion risk distribution. On the clearance surface of the NACA0012, TSV cavitation primarily collapses in the central region, whereas for the NACA0024 hydrofoil, TSV cavitation occurs only in the upstream region of the clearance surface and exhibits more stability. The differences in vorticity distribution near the clearance surface partially influence the distribution of TSV cavitation, thereby affecting the characteristics of cavitation erosion risk distribution. The larger characteristic thickness of the NACA0024 reduces the effects of the stretching term and the baroclinic torque term, weakening the effect of vorticity on TSV cavitation, resulting in more stable patterns of the TSV cavitation.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"37 1","pages":"50 - 62"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of hydrofoil characteristic thickness on the cavitation erosion risk distribution of clearance vortex cavitation and its mechanisms\",\"authors\":\"Jia-le Huang, Huai-yu Cheng, Yan-tao Cao, Bin Ji\",\"doi\":\"10.1007/s42241-025-0014-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To clarify the influence of the hydrofoil characteristic thickness on the distribution characteristics and mechanisms of clearance cavitation erosion risk, a large eddy simulation (LES) is conducted to study the clearance cavitating flow around NACA0012 and NACA0024 hydrofoils under identical conditions. The study predicts cavitation erosion risk using three methods: The erosive power method (EPM), the improved gray level method (IGLM) and the energy conservation method (ECM). The numerical results are in good agreement with the experiment data and the ECM is applied due to its simplicity in parameter adjustment and low sensitivity. The results indicate that the characteristic thickness significantly influences the flow field, leading to variations in the position and intensity of cavitation collapse, ultimately resulting in notable differences in cavitation erosion risk distribution. The high cavitation erosion risk region on the clearance surface of NACA0012 is concentrated around the midsection, while it is concentrated in the upstream region for the NACA0024, with a lower frequency of extreme events. Tip separation vortex (TSV) cavitation is the main cause of the differences in cavitation erosion risk distribution. On the clearance surface of the NACA0012, TSV cavitation primarily collapses in the central region, whereas for the NACA0024 hydrofoil, TSV cavitation occurs only in the upstream region of the clearance surface and exhibits more stability. The differences in vorticity distribution near the clearance surface partially influence the distribution of TSV cavitation, thereby affecting the characteristics of cavitation erosion risk distribution. The larger characteristic thickness of the NACA0024 reduces the effects of the stretching term and the baroclinic torque term, weakening the effect of vorticity on TSV cavitation, resulting in more stable patterns of the TSV cavitation.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"37 1\",\"pages\":\"50 - 62\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-025-0014-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-025-0014-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of hydrofoil characteristic thickness on the cavitation erosion risk distribution of clearance vortex cavitation and its mechanisms
To clarify the influence of the hydrofoil characteristic thickness on the distribution characteristics and mechanisms of clearance cavitation erosion risk, a large eddy simulation (LES) is conducted to study the clearance cavitating flow around NACA0012 and NACA0024 hydrofoils under identical conditions. The study predicts cavitation erosion risk using three methods: The erosive power method (EPM), the improved gray level method (IGLM) and the energy conservation method (ECM). The numerical results are in good agreement with the experiment data and the ECM is applied due to its simplicity in parameter adjustment and low sensitivity. The results indicate that the characteristic thickness significantly influences the flow field, leading to variations in the position and intensity of cavitation collapse, ultimately resulting in notable differences in cavitation erosion risk distribution. The high cavitation erosion risk region on the clearance surface of NACA0012 is concentrated around the midsection, while it is concentrated in the upstream region for the NACA0024, with a lower frequency of extreme events. Tip separation vortex (TSV) cavitation is the main cause of the differences in cavitation erosion risk distribution. On the clearance surface of the NACA0012, TSV cavitation primarily collapses in the central region, whereas for the NACA0024 hydrofoil, TSV cavitation occurs only in the upstream region of the clearance surface and exhibits more stability. The differences in vorticity distribution near the clearance surface partially influence the distribution of TSV cavitation, thereby affecting the characteristics of cavitation erosion risk distribution. The larger characteristic thickness of the NACA0024 reduces the effects of the stretching term and the baroclinic torque term, weakening the effect of vorticity on TSV cavitation, resulting in more stable patterns of the TSV cavitation.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.