有界和外域上一些几乎临界Brezis-Nirenberg型问题的正解

IF 0.8 3区 数学 Q2 MATHEMATICS
Salomón Alarcón, Pablo Quijada
{"title":"有界和外域上一些几乎临界Brezis-Nirenberg型问题的正解","authors":"Salomón Alarcón,&nbsp;Pablo Quijada","doi":"10.1007/s10114-025-3385-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the equation</p><div><div><span>$$-\\Delta{u}=\\vert{x}\\vert^{\\alpha}u^{p_{\\alpha}^{\\ast}+\\varepsilon}+\\lambda_{\\varepsilon}\\vert{x}\\vert^{\\beta}{u}\\quad\\text{in}\\;\\Omega,$$</span></div></div><p>under the condition <i>u</i> = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝ<sup><i>N</i></sup>, <i>N</i> ≥ 5, which is symmetric respect to <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, 2026;, <i>x</i><sub><i>N</i></sub> and contains the origin, <i>α</i> &gt; −2, −2 &lt; <i>β</i> &lt; <i>N</i> − 4, <span>\\(p_{\\alpha}^{\\ast}={N+2\\alpha+2\\over{N-2}}\\)</span>, <i>ε</i> &gt; 0 is a small parameter and <i>λ</i><sub><i>ε</i></sub> &gt; 0 depends on <i>ε</i>, with <i>λ</i><sub><i>ε</i></sub> → 0 as <i>ε</i> → 0. Our main focus lies in finding positive solutions that take the form of a tower of bubbles of order <i>α</i>, exhibiting concentration at the origin as <i>ε</i> tends to zero. Furthermore, we extend our study to the equation</p><div><div><span>$$-\\Delta{u}=\\vert{x}\\vert^{\\alpha}u^{p_{\\alpha}^{\\ast}-\\varepsilon}-\\lambda_{\\varepsilon}\\vert{x}\\vert^{\\beta}{u}\\quad\\text{in}\\;\\mathbb{R}^{N}\\;\\backslash\\;B_{1},$$</span></div></div><p>where <i>B</i><sub>1</sub> is the unit ball centered at the origin, under Dirichlet zero boundary condition and an additional vanishing condition at infinity. In this context, we discover positive solutions that take the form of a tower of bubbles of order <i>α</i>, progressively flattening as <i>ε</i> tends to zero.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 4","pages":"1131 - 1151"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive Solutions for some almost Critical Brezis-Nirenberg Type Problems in Bounded and Exterior Domains\",\"authors\":\"Salomón Alarcón,&nbsp;Pablo Quijada\",\"doi\":\"10.1007/s10114-025-3385-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the equation</p><div><div><span>$$-\\\\Delta{u}=\\\\vert{x}\\\\vert^{\\\\alpha}u^{p_{\\\\alpha}^{\\\\ast}+\\\\varepsilon}+\\\\lambda_{\\\\varepsilon}\\\\vert{x}\\\\vert^{\\\\beta}{u}\\\\quad\\\\text{in}\\\\;\\\\Omega,$$</span></div></div><p>under the condition <i>u</i> = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝ<sup><i>N</i></sup>, <i>N</i> ≥ 5, which is symmetric respect to <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, 2026;, <i>x</i><sub><i>N</i></sub> and contains the origin, <i>α</i> &gt; −2, −2 &lt; <i>β</i> &lt; <i>N</i> − 4, <span>\\\\(p_{\\\\alpha}^{\\\\ast}={N+2\\\\alpha+2\\\\over{N-2}}\\\\)</span>, <i>ε</i> &gt; 0 is a small parameter and <i>λ</i><sub><i>ε</i></sub> &gt; 0 depends on <i>ε</i>, with <i>λ</i><sub><i>ε</i></sub> → 0 as <i>ε</i> → 0. Our main focus lies in finding positive solutions that take the form of a tower of bubbles of order <i>α</i>, exhibiting concentration at the origin as <i>ε</i> tends to zero. Furthermore, we extend our study to the equation</p><div><div><span>$$-\\\\Delta{u}=\\\\vert{x}\\\\vert^{\\\\alpha}u^{p_{\\\\alpha}^{\\\\ast}-\\\\varepsilon}-\\\\lambda_{\\\\varepsilon}\\\\vert{x}\\\\vert^{\\\\beta}{u}\\\\quad\\\\text{in}\\\\;\\\\mathbb{R}^{N}\\\\;\\\\backslash\\\\;B_{1},$$</span></div></div><p>where <i>B</i><sub>1</sub> is the unit ball centered at the origin, under Dirichlet zero boundary condition and an additional vanishing condition at infinity. In this context, we discover positive solutions that take the form of a tower of bubbles of order <i>α</i>, progressively flattening as <i>ε</i> tends to zero.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 4\",\"pages\":\"1131 - 1151\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3385-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3385-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了∂Ω上u = 0条件下的方程$$-\Delta{u}=\vert{x}\vert^{\alpha}u^{p_{\alpha}^{\ast}+\varepsilon}+\lambda_{\varepsilon}\vert{x}\vert^{\beta}{u}\quad\text{in}\;\Omega,$$,其中Ω是一个光滑有界域,在∈N, N≥5中,它对x1, x2, 2026;, xN是对称的,并且包含原点α &gt;−2,−2 &lt;β &lt;N−4,\(p_{\alpha}^{\ast}={N+2\alpha+2\over{N-2}}\), ε &gt;0是一个小参数,λε &gt;0依赖于ε, λε→0等于ε→0。我们的主要重点在于寻找正解,这些正解采用α阶气泡塔的形式,当ε趋于零时,在原点表现出浓度。进一步,我们将我们的研究扩展到方程$$-\Delta{u}=\vert{x}\vert^{\alpha}u^{p_{\alpha}^{\ast}-\varepsilon}-\lambda_{\varepsilon}\vert{x}\vert^{\beta}{u}\quad\text{in}\;\mathbb{R}^{N}\;\backslash\;B_{1},$$,其中B1是以原点为中心的单位球,在Dirichlet零边界条件和无穷远处的附加消失条件下。在这种情况下,我们发现正解采用α阶气泡塔的形式,当ε趋于零时逐渐变平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive Solutions for some almost Critical Brezis-Nirenberg Type Problems in Bounded and Exterior Domains

We study the equation

$$-\Delta{u}=\vert{x}\vert^{\alpha}u^{p_{\alpha}^{\ast}+\varepsilon}+\lambda_{\varepsilon}\vert{x}\vert^{\beta}{u}\quad\text{in}\;\Omega,$$

under the condition u = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝN, N ≥ 5, which is symmetric respect to x1, x2, 2026;, xN and contains the origin, α > −2, −2 < β < N − 4, \(p_{\alpha}^{\ast}={N+2\alpha+2\over{N-2}}\), ε > 0 is a small parameter and λε > 0 depends on ε, with λε → 0 as ε → 0. Our main focus lies in finding positive solutions that take the form of a tower of bubbles of order α, exhibiting concentration at the origin as ε tends to zero. Furthermore, we extend our study to the equation

$$-\Delta{u}=\vert{x}\vert^{\alpha}u^{p_{\alpha}^{\ast}-\varepsilon}-\lambda_{\varepsilon}\vert{x}\vert^{\beta}{u}\quad\text{in}\;\mathbb{R}^{N}\;\backslash\;B_{1},$$

where B1 is the unit ball centered at the origin, under Dirichlet zero boundary condition and an additional vanishing condition at infinity. In this context, we discover positive solutions that take the form of a tower of bubbles of order α, progressively flattening as ε tends to zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信