{"title":"有界和外域上一些几乎临界Brezis-Nirenberg型问题的正解","authors":"Salomón Alarcón, Pablo Quijada","doi":"10.1007/s10114-025-3385-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the equation</p><div><div><span>$$-\\Delta{u}=\\vert{x}\\vert^{\\alpha}u^{p_{\\alpha}^{\\ast}+\\varepsilon}+\\lambda_{\\varepsilon}\\vert{x}\\vert^{\\beta}{u}\\quad\\text{in}\\;\\Omega,$$</span></div></div><p>under the condition <i>u</i> = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝ<sup><i>N</i></sup>, <i>N</i> ≥ 5, which is symmetric respect to <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, 2026;, <i>x</i><sub><i>N</i></sub> and contains the origin, <i>α</i> > −2, −2 < <i>β</i> < <i>N</i> − 4, <span>\\(p_{\\alpha}^{\\ast}={N+2\\alpha+2\\over{N-2}}\\)</span>, <i>ε</i> > 0 is a small parameter and <i>λ</i><sub><i>ε</i></sub> > 0 depends on <i>ε</i>, with <i>λ</i><sub><i>ε</i></sub> → 0 as <i>ε</i> → 0. Our main focus lies in finding positive solutions that take the form of a tower of bubbles of order <i>α</i>, exhibiting concentration at the origin as <i>ε</i> tends to zero. Furthermore, we extend our study to the equation</p><div><div><span>$$-\\Delta{u}=\\vert{x}\\vert^{\\alpha}u^{p_{\\alpha}^{\\ast}-\\varepsilon}-\\lambda_{\\varepsilon}\\vert{x}\\vert^{\\beta}{u}\\quad\\text{in}\\;\\mathbb{R}^{N}\\;\\backslash\\;B_{1},$$</span></div></div><p>where <i>B</i><sub>1</sub> is the unit ball centered at the origin, under Dirichlet zero boundary condition and an additional vanishing condition at infinity. In this context, we discover positive solutions that take the form of a tower of bubbles of order <i>α</i>, progressively flattening as <i>ε</i> tends to zero.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 4","pages":"1131 - 1151"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive Solutions for some almost Critical Brezis-Nirenberg Type Problems in Bounded and Exterior Domains\",\"authors\":\"Salomón Alarcón, Pablo Quijada\",\"doi\":\"10.1007/s10114-025-3385-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the equation</p><div><div><span>$$-\\\\Delta{u}=\\\\vert{x}\\\\vert^{\\\\alpha}u^{p_{\\\\alpha}^{\\\\ast}+\\\\varepsilon}+\\\\lambda_{\\\\varepsilon}\\\\vert{x}\\\\vert^{\\\\beta}{u}\\\\quad\\\\text{in}\\\\;\\\\Omega,$$</span></div></div><p>under the condition <i>u</i> = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝ<sup><i>N</i></sup>, <i>N</i> ≥ 5, which is symmetric respect to <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, 2026;, <i>x</i><sub><i>N</i></sub> and contains the origin, <i>α</i> > −2, −2 < <i>β</i> < <i>N</i> − 4, <span>\\\\(p_{\\\\alpha}^{\\\\ast}={N+2\\\\alpha+2\\\\over{N-2}}\\\\)</span>, <i>ε</i> > 0 is a small parameter and <i>λ</i><sub><i>ε</i></sub> > 0 depends on <i>ε</i>, with <i>λ</i><sub><i>ε</i></sub> → 0 as <i>ε</i> → 0. Our main focus lies in finding positive solutions that take the form of a tower of bubbles of order <i>α</i>, exhibiting concentration at the origin as <i>ε</i> tends to zero. Furthermore, we extend our study to the equation</p><div><div><span>$$-\\\\Delta{u}=\\\\vert{x}\\\\vert^{\\\\alpha}u^{p_{\\\\alpha}^{\\\\ast}-\\\\varepsilon}-\\\\lambda_{\\\\varepsilon}\\\\vert{x}\\\\vert^{\\\\beta}{u}\\\\quad\\\\text{in}\\\\;\\\\mathbb{R}^{N}\\\\;\\\\backslash\\\\;B_{1},$$</span></div></div><p>where <i>B</i><sub>1</sub> is the unit ball centered at the origin, under Dirichlet zero boundary condition and an additional vanishing condition at infinity. In this context, we discover positive solutions that take the form of a tower of bubbles of order <i>α</i>, progressively flattening as <i>ε</i> tends to zero.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 4\",\"pages\":\"1131 - 1151\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3385-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3385-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
under the condition u = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝN, N ≥ 5, which is symmetric respect to x1, x2, 2026;, xN and contains the origin, α > −2, −2 < β < N − 4, \(p_{\alpha}^{\ast}={N+2\alpha+2\over{N-2}}\), ε > 0 is a small parameter and λε > 0 depends on ε, with λε → 0 as ε → 0. Our main focus lies in finding positive solutions that take the form of a tower of bubbles of order α, exhibiting concentration at the origin as ε tends to zero. Furthermore, we extend our study to the equation
where B1 is the unit ball centered at the origin, under Dirichlet zero boundary condition and an additional vanishing condition at infinity. In this context, we discover positive solutions that take the form of a tower of bubbles of order α, progressively flattening as ε tends to zero.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.