边值问题中具有简单焦散的有效半经典渐近性

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
S.Yu. Dobrokhotov, V.E. Nazaikinskiih, A.V. Tsvetkova, A.V. Turin
{"title":"边值问题中具有简单焦散的有效半经典渐近性","authors":"S.Yu. Dobrokhotov,&nbsp;V.E. Nazaikinskiih,&nbsp;A.V. Tsvetkova,&nbsp;A.V. Turin","doi":"10.1134/S1061920825600072","DOIUrl":null,"url":null,"abstract":"<p> In this paper we continue to develop the approach to constructing global uniform asymptotics of solutions of (pseudo)differential problems in terms of special functions based on the theory of the Maslov canonical operator. In particular, we show that if the corresponding Lagrangian manifold has a fold-type singularity, then the canonical operator on it is represented via the Airy function Ai and its derivative of complex arguments. This approach is illustrated by a known problem about construction of asymptotic eigenfunctions of the Laplace operator in an elliptic domain with Dirichlet boundary conditions. </p><p> <b> DOI</b> 10.1134/S1061920825600072 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"28 - 43"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Semiclassical Asymptotics with Simple Caustics in a Boundary Value Problem\",\"authors\":\"S.Yu. Dobrokhotov,&nbsp;V.E. Nazaikinskiih,&nbsp;A.V. Tsvetkova,&nbsp;A.V. Turin\",\"doi\":\"10.1134/S1061920825600072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this paper we continue to develop the approach to constructing global uniform asymptotics of solutions of (pseudo)differential problems in terms of special functions based on the theory of the Maslov canonical operator. In particular, we show that if the corresponding Lagrangian manifold has a fold-type singularity, then the canonical operator on it is represented via the Airy function Ai and its derivative of complex arguments. This approach is illustrated by a known problem about construction of asymptotic eigenfunctions of the Laplace operator in an elliptic domain with Dirichlet boundary conditions. </p><p> <b> DOI</b> 10.1134/S1061920825600072 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 1\",\"pages\":\"28 - 43\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920825600072\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920825600072","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们基于马斯洛夫正则算子理论,继续发展了用特殊函数构造(伪)微分问题解的全局一致渐近的方法。特别地,我们证明了如果相应的拉格朗日流形具有折叠型奇点,则其上的正则算子可以通过Airy函数Ai及其复参数的导数来表示。用一个已知的具有狄利克雷边界条件的椭圆域上拉普拉斯算子的渐近特征函数的构造问题说明了这种方法。DOI 10.1134 / S1061920825600072
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Semiclassical Asymptotics with Simple Caustics in a Boundary Value Problem

In this paper we continue to develop the approach to constructing global uniform asymptotics of solutions of (pseudo)differential problems in terms of special functions based on the theory of the Maslov canonical operator. In particular, we show that if the corresponding Lagrangian manifold has a fold-type singularity, then the canonical operator on it is represented via the Airy function Ai and its derivative of complex arguments. This approach is illustrated by a known problem about construction of asymptotic eigenfunctions of the Laplace operator in an elliptic domain with Dirichlet boundary conditions.

DOI 10.1134/S1061920825600072

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信