波长与局域非均匀性尺度不可比的局域速度扰动波动方程的短波解。一维情况下

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
A.I. Allilueva, A.I. Shafarevich
{"title":"波长与局域非均匀性尺度不可比的局域速度扰动波动方程的短波解。一维情况下","authors":"A.I. Allilueva,&nbsp;A.I. Shafarevich","doi":"10.1134/S1061920825600400","DOIUrl":null,"url":null,"abstract":"<p> The paper studies a wave equation whose velocity has a localized perturbation at some point <span>\\(x_0\\)</span>. The initial condition has the form of a rapidly oscillating wave packet whose wavelength is not comparable with the scale of the inhomogeneity. In this case, the length of the initial wave is of the order of <span>\\(\\varepsilon,\\)</span> and the width of the localized inhomogeneity is of the order of <span>\\(\\sqrt{\\varepsilon},\\)</span> where <span>\\(\\varepsilon\\)</span> is a small parameter that tends to 0. </p><p> <b> DOI</b> 10.1134/S1061920825600400 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"1 - 10"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Wave Solutions of the Wave Equation with Localized Velocity Perturbations Whose Wavelength Is Not Comparable to the Scale of Localized Inhomogeneity. One-Dimensional Case\",\"authors\":\"A.I. Allilueva,&nbsp;A.I. Shafarevich\",\"doi\":\"10.1134/S1061920825600400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The paper studies a wave equation whose velocity has a localized perturbation at some point <span>\\\\(x_0\\\\)</span>. The initial condition has the form of a rapidly oscillating wave packet whose wavelength is not comparable with the scale of the inhomogeneity. In this case, the length of the initial wave is of the order of <span>\\\\(\\\\varepsilon,\\\\)</span> and the width of the localized inhomogeneity is of the order of <span>\\\\(\\\\sqrt{\\\\varepsilon},\\\\)</span> where <span>\\\\(\\\\varepsilon\\\\)</span> is a small parameter that tends to 0. </p><p> <b> DOI</b> 10.1134/S1061920825600400 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 1\",\"pages\":\"1 - 10\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920825600400\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920825600400","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了速度在某一点有局域摄动\(x_0\)的波动方程。初始条件具有快速振荡波包的形式,其波长与非均匀性的尺度不可比较。在这种情况下,初始波的长度为\(\varepsilon,\)数量级,局部不均匀性的宽度为\(\sqrt{\varepsilon},\)数量级,其中\(\varepsilon\)是一个趋向于0的小参数。Doi 10.1134/ s1061920825600400
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Wave Solutions of the Wave Equation with Localized Velocity Perturbations Whose Wavelength Is Not Comparable to the Scale of Localized Inhomogeneity. One-Dimensional Case

The paper studies a wave equation whose velocity has a localized perturbation at some point \(x_0\). The initial condition has the form of a rapidly oscillating wave packet whose wavelength is not comparable with the scale of the inhomogeneity. In this case, the length of the initial wave is of the order of \(\varepsilon,\) and the width of the localized inhomogeneity is of the order of \(\sqrt{\varepsilon},\) where \(\varepsilon\) is a small parameter that tends to 0.

DOI 10.1134/S1061920825600400

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信