曲面上测地线的分数-线性积分

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
B. Kruglikov
{"title":"曲面上测地线的分数-线性积分","authors":"B. Kruglikov","doi":"10.1134/S1061920824601836","DOIUrl":null,"url":null,"abstract":"<p> In this note, we give a criterion for the existence of a fractional-linear integral for a geodesic flow on a Riemannian surface and explain that, modulo the Möbius transformations, the moduli space of such local integrals (if nonempty) is either the two-dimensional projective plane or a finite number of points. We also consider explicit examples and discuss a relation of such rational integrals to Killing vectors. </p><p> <b> DOI</b> 10.1134/S1061920824601836 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"97 - 104"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fractional-Linear Integrals of Geodesics on Surfaces\",\"authors\":\"B. Kruglikov\",\"doi\":\"10.1134/S1061920824601836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this note, we give a criterion for the existence of a fractional-linear integral for a geodesic flow on a Riemannian surface and explain that, modulo the Möbius transformations, the moduli space of such local integrals (if nonempty) is either the two-dimensional projective plane or a finite number of points. We also consider explicit examples and discuss a relation of such rational integrals to Killing vectors. </p><p> <b> DOI</b> 10.1134/S1061920824601836 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 1\",\"pages\":\"97 - 104\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824601836\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824601836","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了黎曼曲面上测地流的分数线性积分存在的一个判据,并解释了,对Möbius变换取模,这种局部积分的模空间(如果是非空的)要么是二维投影平面,要么是有限个数的点。我们还考虑了显式的例子,并讨论了这种有理积分与杀戮向量的关系。DOI 10.1134 / S1061920824601836
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fractional-Linear Integrals of Geodesics on Surfaces

In this note, we give a criterion for the existence of a fractional-linear integral for a geodesic flow on a Riemannian surface and explain that, modulo the Möbius transformations, the moduli space of such local integrals (if nonempty) is either the two-dimensional projective plane or a finite number of points. We also consider explicit examples and discuss a relation of such rational integrals to Killing vectors.

DOI 10.1134/S1061920824601836

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信