{"title":"曲面上测地线的分数-线性积分","authors":"B. Kruglikov","doi":"10.1134/S1061920824601836","DOIUrl":null,"url":null,"abstract":"<p> In this note, we give a criterion for the existence of a fractional-linear integral for a geodesic flow on a Riemannian surface and explain that, modulo the Möbius transformations, the moduli space of such local integrals (if nonempty) is either the two-dimensional projective plane or a finite number of points. We also consider explicit examples and discuss a relation of such rational integrals to Killing vectors. </p><p> <b> DOI</b> 10.1134/S1061920824601836 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 1","pages":"97 - 104"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fractional-Linear Integrals of Geodesics on Surfaces\",\"authors\":\"B. Kruglikov\",\"doi\":\"10.1134/S1061920824601836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this note, we give a criterion for the existence of a fractional-linear integral for a geodesic flow on a Riemannian surface and explain that, modulo the Möbius transformations, the moduli space of such local integrals (if nonempty) is either the two-dimensional projective plane or a finite number of points. We also consider explicit examples and discuss a relation of such rational integrals to Killing vectors. </p><p> <b> DOI</b> 10.1134/S1061920824601836 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 1\",\"pages\":\"97 - 104\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824601836\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824601836","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On Fractional-Linear Integrals of Geodesics on Surfaces
In this note, we give a criterion for the existence of a fractional-linear integral for a geodesic flow on a Riemannian surface and explain that, modulo the Möbius transformations, the moduli space of such local integrals (if nonempty) is either the two-dimensional projective plane or a finite number of points. We also consider explicit examples and discuss a relation of such rational integrals to Killing vectors.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.