{"title":"喷丸强化顺序对复杂航空部件强化性能的影响与分析","authors":"Long Li, Luteng Liu, Shihong Lu","doi":"10.1007/s12289-025-01910-x","DOIUrl":null,"url":null,"abstract":"<div><p>Different shot peening sequences can affect the effectiveness of shot peening definitely. To comprehensively investigate the ramifications of different shot peening sequences on the structural integrity of aviation components, this study formulates a shot peening sequence model tailored to the cross-sectional features of H-shaped slide rails commonly found in aircraft, leveraging Abaqus and Python. Combining numerical simulations and experimental data, we utilize the Euclidean distance to assess the similarity of residual stress distribution curves. Effects of six different shot peening surface strengthening sequences on the residual stress distribution and deformation across each surface of the aircraft slide rail’s typical cross-section are analyzed. Results indicate that variability exists in the similarity of maximum residual stress distribution among surfaces subjected to different shot peening sequences. Notably, the fully symmetric strengthening sequence S4 yields the highest similarity in the residual stress distribution curve. Moreover, the maximum deformation of the workpiece groove exhibits a 26.3% disparity under various shot peening strengthening sequences. This indicates that an appropriately selected shot peening sequence can mitigate size errors arising from the strengthening process. This implies that a judiciously chosen shot peening strengthening sequence could enhance the overall shot peening quality of the component.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence and analysis of shot peening sequence on the strengthening performance of complex aviation components\",\"authors\":\"Long Li, Luteng Liu, Shihong Lu\",\"doi\":\"10.1007/s12289-025-01910-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Different shot peening sequences can affect the effectiveness of shot peening definitely. To comprehensively investigate the ramifications of different shot peening sequences on the structural integrity of aviation components, this study formulates a shot peening sequence model tailored to the cross-sectional features of H-shaped slide rails commonly found in aircraft, leveraging Abaqus and Python. Combining numerical simulations and experimental data, we utilize the Euclidean distance to assess the similarity of residual stress distribution curves. Effects of six different shot peening surface strengthening sequences on the residual stress distribution and deformation across each surface of the aircraft slide rail’s typical cross-section are analyzed. Results indicate that variability exists in the similarity of maximum residual stress distribution among surfaces subjected to different shot peening sequences. Notably, the fully symmetric strengthening sequence S4 yields the highest similarity in the residual stress distribution curve. Moreover, the maximum deformation of the workpiece groove exhibits a 26.3% disparity under various shot peening strengthening sequences. This indicates that an appropriately selected shot peening sequence can mitigate size errors arising from the strengthening process. This implies that a judiciously chosen shot peening strengthening sequence could enhance the overall shot peening quality of the component.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01910-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01910-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
The influence and analysis of shot peening sequence on the strengthening performance of complex aviation components
Different shot peening sequences can affect the effectiveness of shot peening definitely. To comprehensively investigate the ramifications of different shot peening sequences on the structural integrity of aviation components, this study formulates a shot peening sequence model tailored to the cross-sectional features of H-shaped slide rails commonly found in aircraft, leveraging Abaqus and Python. Combining numerical simulations and experimental data, we utilize the Euclidean distance to assess the similarity of residual stress distribution curves. Effects of six different shot peening surface strengthening sequences on the residual stress distribution and deformation across each surface of the aircraft slide rail’s typical cross-section are analyzed. Results indicate that variability exists in the similarity of maximum residual stress distribution among surfaces subjected to different shot peening sequences. Notably, the fully symmetric strengthening sequence S4 yields the highest similarity in the residual stress distribution curve. Moreover, the maximum deformation of the workpiece groove exhibits a 26.3% disparity under various shot peening strengthening sequences. This indicates that an appropriately selected shot peening sequence can mitigate size errors arising from the strengthening process. This implies that a judiciously chosen shot peening strengthening sequence could enhance the overall shot peening quality of the component.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.