Luke Dixon, Alistair Weld, Dolin Bhagawati, Neekhil Patel, Stamatia Giannarou, Matthew Grech-Sollars, Adrian Lim, Sophie Camp
{"title":"胶质瘤术中微血管超声成像:与肿瘤分级相关的新型定量分析","authors":"Luke Dixon, Alistair Weld, Dolin Bhagawati, Neekhil Patel, Stamatia Giannarou, Matthew Grech-Sollars, Adrian Lim, Sophie Camp","doi":"10.1007/s00701-025-06535-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Accurate grading of gliomas is critical to guide therapy and predict prognosis. The presence of microvascular proliferation is a hallmark feature of high grade gliomas which to directly visualise traditionally requires targeted surgical biopsy of representative tissue. Superb microvascular imaging (SMI) is a novel high resolution Doppler ultrasound technique which can uniquely define the microvascular architecture of whole tumours.</p><h3>Methods</h3><p>We examined both qualitative and quantitative vascular features of 32 gliomas captured with SMI, analysing flow signal density, vessel number, branching points, curvature, vessel angle deviation, fractal dimension, and entropy.</p><h3>Results</h3><p>High-grade gliomas exhibit significantly greater vascular complexity and disorganisation, with increased fractal dimension and entropy, correlating with known histopathological markers of aggressive angiogenesis. The integrated ROC model achieved high accuracy (AUC = 0.95).</p><h3>Conclusions</h3><p>This study leveraged SMI to provide further insights into the microvascular architecture of gliomas which is not resolvable by magnetic resonance imaging. Applying novel quantitative analysis the study demonstrated that there are quantifiable differences in vascular morphology between high grade and low-grade gliomas. This unique <i>in vivo</i> imaging of glioma vascularity and quantification warrants further exploration as a potential new diagnostic and prognostic tool that may support glioma management, intraoperative decision-making and informing future prognosis.</p></div>","PeriodicalId":7370,"journal":{"name":"Acta Neurochirurgica","volume":"167 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00701-025-06535-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Intraoperative superb microvascular ultrasound imaging in glioma: novel quantitative analysis correlates with tumour grade\",\"authors\":\"Luke Dixon, Alistair Weld, Dolin Bhagawati, Neekhil Patel, Stamatia Giannarou, Matthew Grech-Sollars, Adrian Lim, Sophie Camp\",\"doi\":\"10.1007/s00701-025-06535-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Accurate grading of gliomas is critical to guide therapy and predict prognosis. The presence of microvascular proliferation is a hallmark feature of high grade gliomas which to directly visualise traditionally requires targeted surgical biopsy of representative tissue. Superb microvascular imaging (SMI) is a novel high resolution Doppler ultrasound technique which can uniquely define the microvascular architecture of whole tumours.</p><h3>Methods</h3><p>We examined both qualitative and quantitative vascular features of 32 gliomas captured with SMI, analysing flow signal density, vessel number, branching points, curvature, vessel angle deviation, fractal dimension, and entropy.</p><h3>Results</h3><p>High-grade gliomas exhibit significantly greater vascular complexity and disorganisation, with increased fractal dimension and entropy, correlating with known histopathological markers of aggressive angiogenesis. The integrated ROC model achieved high accuracy (AUC = 0.95).</p><h3>Conclusions</h3><p>This study leveraged SMI to provide further insights into the microvascular architecture of gliomas which is not resolvable by magnetic resonance imaging. Applying novel quantitative analysis the study demonstrated that there are quantifiable differences in vascular morphology between high grade and low-grade gliomas. This unique <i>in vivo</i> imaging of glioma vascularity and quantification warrants further exploration as a potential new diagnostic and prognostic tool that may support glioma management, intraoperative decision-making and informing future prognosis.</p></div>\",\"PeriodicalId\":7370,\"journal\":{\"name\":\"Acta Neurochirurgica\",\"volume\":\"167 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00701-025-06535-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neurochirurgica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00701-025-06535-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neurochirurgica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00701-025-06535-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Intraoperative superb microvascular ultrasound imaging in glioma: novel quantitative analysis correlates with tumour grade
Background
Accurate grading of gliomas is critical to guide therapy and predict prognosis. The presence of microvascular proliferation is a hallmark feature of high grade gliomas which to directly visualise traditionally requires targeted surgical biopsy of representative tissue. Superb microvascular imaging (SMI) is a novel high resolution Doppler ultrasound technique which can uniquely define the microvascular architecture of whole tumours.
Methods
We examined both qualitative and quantitative vascular features of 32 gliomas captured with SMI, analysing flow signal density, vessel number, branching points, curvature, vessel angle deviation, fractal dimension, and entropy.
Results
High-grade gliomas exhibit significantly greater vascular complexity and disorganisation, with increased fractal dimension and entropy, correlating with known histopathological markers of aggressive angiogenesis. The integrated ROC model achieved high accuracy (AUC = 0.95).
Conclusions
This study leveraged SMI to provide further insights into the microvascular architecture of gliomas which is not resolvable by magnetic resonance imaging. Applying novel quantitative analysis the study demonstrated that there are quantifiable differences in vascular morphology between high grade and low-grade gliomas. This unique in vivo imaging of glioma vascularity and quantification warrants further exploration as a potential new diagnostic and prognostic tool that may support glioma management, intraoperative decision-making and informing future prognosis.
期刊介绍:
The journal "Acta Neurochirurgica" publishes only original papers useful both to research and clinical work. Papers should deal with clinical neurosurgery - diagnosis and diagnostic techniques, operative surgery and results, postoperative treatment - or with research work in neuroscience if the underlying questions or the results are of neurosurgical interest. Reports on congresses are given in brief accounts. As official organ of the European Association of Neurosurgical Societies the journal publishes all announcements of the E.A.N.S. and reports on the activities of its member societies. Only contributions written in English will be accepted.