基于热-化-力全耦合黏弹性模型的固体推进剂装药压力固化

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Dong Wu, Yongjun Lei, Zhibin Shen, Dapeng Zhang
{"title":"基于热-化-力全耦合黏弹性模型的固体推进剂装药压力固化","authors":"Dong Wu,&nbsp;Yongjun Lei,&nbsp;Zhibin Shen,&nbsp;Dapeng Zhang","doi":"10.1007/s12289-025-01907-6","DOIUrl":null,"url":null,"abstract":"<div><p>Pressure cure can reduce the cure residual stress (CRS) of solid propellant charges, thereby enhancing the structural integrity and storage life. As the polymerization reaction progresses, it is accompanied by heat release, chemical volume shrinkage, and viscoelastic evolution. In this study, a thermodynamically consistent, fully coupled thermo-chemo-mechanical viscoelastic model is developed. Relaxation tests are carried out on hydroxylated polybutadiene (HTPB) propellant specimens at different cure times revel the viscoelastic evolution mechanism. Consequently, a viscoelastic evolution model is established in relation to the degree of cure (DOC). On the basis, the CRS analysis of the pressure cure HTPB solid propellant charge is performed by means of user material subroutines. The model is validated against literature and experimental results. Furthermore, factors affecting temperature, DOC and CRS are analyzed. Results indicate that the shift factor of HTPB propellant is independent of DOC, while relaxation time first increases and then decreases. Employing the multi-physics coupled viscoelastic model provides a detailed description of the CRS development. An enhanced pressure cure scheme is proposed, which involves releasing partial pressure during cure to future reduce CRS. This model establishes a foundation for designing cure cycles and predicting CRS in solid propellant charges.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01907-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Pressure cure of solid propellant charge based on thermo-chemo-mechanical fully coupled viscoelastic model\",\"authors\":\"Dong Wu,&nbsp;Yongjun Lei,&nbsp;Zhibin Shen,&nbsp;Dapeng Zhang\",\"doi\":\"10.1007/s12289-025-01907-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pressure cure can reduce the cure residual stress (CRS) of solid propellant charges, thereby enhancing the structural integrity and storage life. As the polymerization reaction progresses, it is accompanied by heat release, chemical volume shrinkage, and viscoelastic evolution. In this study, a thermodynamically consistent, fully coupled thermo-chemo-mechanical viscoelastic model is developed. Relaxation tests are carried out on hydroxylated polybutadiene (HTPB) propellant specimens at different cure times revel the viscoelastic evolution mechanism. Consequently, a viscoelastic evolution model is established in relation to the degree of cure (DOC). On the basis, the CRS analysis of the pressure cure HTPB solid propellant charge is performed by means of user material subroutines. The model is validated against literature and experimental results. Furthermore, factors affecting temperature, DOC and CRS are analyzed. Results indicate that the shift factor of HTPB propellant is independent of DOC, while relaxation time first increases and then decreases. Employing the multi-physics coupled viscoelastic model provides a detailed description of the CRS development. An enhanced pressure cure scheme is proposed, which involves releasing partial pressure during cure to future reduce CRS. This model establishes a foundation for designing cure cycles and predicting CRS in solid propellant charges.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-025-01907-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01907-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01907-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

压力固化可以降低固体推进剂装药的固化残余应力,从而提高结构的完整性和贮存寿命。随着聚合反应的进行,伴随着热释放、化学体积收缩和粘弹性演化。在这项研究中,建立了一个热力学一致的,完全耦合的热-化学-机械粘弹性模型。对羟基化聚丁二烯(HTPB)推进剂试样进行了不同固化时间的松弛试验,揭示了其粘弹性演化机理。在此基础上,建立了与固化度(DOC)相关的粘弹性演化模型。在此基础上,利用用户材料子程序对高压固化HTPB固体推进剂装药进行了CRS分析。根据文献和实验结果对模型进行了验证。进一步分析了温度、DOC和CRS的影响因素。结果表明:HTPB推进剂的位移因子与DOC无关,弛豫时间先增大后减小;采用多物理场耦合粘弹性模型详细描述了CRS的发展过程。提出了一种增强压力固化方案,即在固化过程中释放分压,以降低未来的CRS。该模型为固体推进剂装药固化周期设计和CRS预测奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure cure of solid propellant charge based on thermo-chemo-mechanical fully coupled viscoelastic model

Pressure cure can reduce the cure residual stress (CRS) of solid propellant charges, thereby enhancing the structural integrity and storage life. As the polymerization reaction progresses, it is accompanied by heat release, chemical volume shrinkage, and viscoelastic evolution. In this study, a thermodynamically consistent, fully coupled thermo-chemo-mechanical viscoelastic model is developed. Relaxation tests are carried out on hydroxylated polybutadiene (HTPB) propellant specimens at different cure times revel the viscoelastic evolution mechanism. Consequently, a viscoelastic evolution model is established in relation to the degree of cure (DOC). On the basis, the CRS analysis of the pressure cure HTPB solid propellant charge is performed by means of user material subroutines. The model is validated against literature and experimental results. Furthermore, factors affecting temperature, DOC and CRS are analyzed. Results indicate that the shift factor of HTPB propellant is independent of DOC, while relaxation time first increases and then decreases. Employing the multi-physics coupled viscoelastic model provides a detailed description of the CRS development. An enhanced pressure cure scheme is proposed, which involves releasing partial pressure during cure to future reduce CRS. This model establishes a foundation for designing cure cycles and predicting CRS in solid propellant charges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信