分子晶体中动态无序的计算见解-从声子的电子结构到热力学

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-04-08 DOI:10.1039/D5CE00209E
Ctirad Červinka
{"title":"分子晶体中动态无序的计算见解-从声子的电子结构到热力学","authors":"Ctirad Červinka","doi":"10.1039/D5CE00209E","DOIUrl":null,"url":null,"abstract":"<p >Quantum-chemical nature of molecular interactions and atomic vibrations imparts a ubiquitous internal dynamics even to solid molecular materials that appear as very rigid from the macroscopic point of view. Existence of flat potential energy basins related to dynamic degrees of freedom in molecular crystals usually gives birth to large-amplitude motions of molecular segments or entire molecules that is commonly recognized as dynamic disorder. Computational chemistry offers suitable approaches for sampling these potential energy surfaces, subsequently enabling to model atomic displacements related to disorder and contributions of this internal dynamics to macroscopic material properties such as entropy, volatility, solubility, plasticity or conductivity. This highlight article presents a mosaic of recent research results which were achieved thanks to the computational methods playing a perfectly complementary role to experimental approaches. Observed material properties and the either beneficial or detrimental impact of dynamic disorder thereon can be then interpreted at the atomic level which naturally contributes to a better understanding of the underlying phenomena and enables to rationalize future material design. This highlight article illustrates the impact of dynamic disorder in the fields of barocaloric materials for heat management, active pharmaceutical ingredients and organic molecular semiconductors. Such a scope enables to account for how the dynamic disorder manifests itself in modelling thermodynamic or spectroscopic properties, phase behavior, electron structure and charge transport in molecular crystals.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 18","pages":" 2778-2794"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00209e?page=search","citationCount":"0","resultStr":"{\"title\":\"Computational insights on dynamic disorder in molecular crystals – from electron structure over phonons to thermodynamics\",\"authors\":\"Ctirad Červinka\",\"doi\":\"10.1039/D5CE00209E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Quantum-chemical nature of molecular interactions and atomic vibrations imparts a ubiquitous internal dynamics even to solid molecular materials that appear as very rigid from the macroscopic point of view. Existence of flat potential energy basins related to dynamic degrees of freedom in molecular crystals usually gives birth to large-amplitude motions of molecular segments or entire molecules that is commonly recognized as dynamic disorder. Computational chemistry offers suitable approaches for sampling these potential energy surfaces, subsequently enabling to model atomic displacements related to disorder and contributions of this internal dynamics to macroscopic material properties such as entropy, volatility, solubility, plasticity or conductivity. This highlight article presents a mosaic of recent research results which were achieved thanks to the computational methods playing a perfectly complementary role to experimental approaches. Observed material properties and the either beneficial or detrimental impact of dynamic disorder thereon can be then interpreted at the atomic level which naturally contributes to a better understanding of the underlying phenomena and enables to rationalize future material design. This highlight article illustrates the impact of dynamic disorder in the fields of barocaloric materials for heat management, active pharmaceutical ingredients and organic molecular semiconductors. Such a scope enables to account for how the dynamic disorder manifests itself in modelling thermodynamic or spectroscopic properties, phase behavior, electron structure and charge transport in molecular crystals.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 18\",\"pages\":\" 2778-2794\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00209e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00209e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00209e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分子相互作用和原子振动的量子化学性质赋予了无处不在的内部动力学,甚至对于从宏观角度来看非常坚硬的固体分子材料也是如此。分子晶体中存在与动态自由度相关的平面势能盆地,通常会产生分子片段或整个分子的大振幅运动,即通常所说的动态失序。计算化学为这些势能表面的采样提供了合适的方法,随后能够模拟与无序相关的原子位移,以及这种内部动力学对宏观材料特性(如熵、挥发性、溶解度、塑性或电导率)的贡献。这篇重点文章介绍了最近的研究成果,这些成果是由于计算方法与实验方法完美互补而取得的。观察到的材料特性以及动态无序对其的有利或有害影响可以在原子水平上解释,这自然有助于更好地理解潜在现象,并使未来的材料设计合理化。这篇重点文章阐述了动态无序在热管理用压热材料、活性药物成分和有机分子半导体等领域的影响。这样的范围能够解释动态无序如何在模拟分子晶体的热力学或光谱性质、相行为、电子结构和电荷输运时表现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational insights on dynamic disorder in molecular crystals – from electron structure over phonons to thermodynamics

Quantum-chemical nature of molecular interactions and atomic vibrations imparts a ubiquitous internal dynamics even to solid molecular materials that appear as very rigid from the macroscopic point of view. Existence of flat potential energy basins related to dynamic degrees of freedom in molecular crystals usually gives birth to large-amplitude motions of molecular segments or entire molecules that is commonly recognized as dynamic disorder. Computational chemistry offers suitable approaches for sampling these potential energy surfaces, subsequently enabling to model atomic displacements related to disorder and contributions of this internal dynamics to macroscopic material properties such as entropy, volatility, solubility, plasticity or conductivity. This highlight article presents a mosaic of recent research results which were achieved thanks to the computational methods playing a perfectly complementary role to experimental approaches. Observed material properties and the either beneficial or detrimental impact of dynamic disorder thereon can be then interpreted at the atomic level which naturally contributes to a better understanding of the underlying phenomena and enables to rationalize future material design. This highlight article illustrates the impact of dynamic disorder in the fields of barocaloric materials for heat management, active pharmaceutical ingredients and organic molecular semiconductors. Such a scope enables to account for how the dynamic disorder manifests itself in modelling thermodynamic or spectroscopic properties, phase behavior, electron structure and charge transport in molecular crystals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信