基于d3qn的物联网IAB资源分配与系留无人机定位

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Yerin Lee;Heejung Yu;Howon Lee;Mohamed-Slim Alouini
{"title":"基于d3qn的物联网IAB资源分配与系留无人机定位","authors":"Yerin Lee;Heejung Yu;Howon Lee;Mohamed-Slim Alouini","doi":"10.1109/TITS.2025.3554538","DOIUrl":null,"url":null,"abstract":"The use of tethered uncrewed aerial vehicles (TUAVs) is promising for addressing the energy-constraint problems associated with battery-powered aerial vehicles. In addition, integrated access and backhaul (IAB) technology allows the simultaneous exploitation of the same frequency band for both access and backhaul links, thus increasing resource utilization efficiency in air-ground integrated Internet of Things (IoT) networks. However, the joint optimization of TUAV deployment and IAB bandwidth allocation is an extremely complicated problem, particularly when considering the dynamic characteristics of TUAV-aided IAB network environments. Therefore, we herein propose a distributed double deep Q-network (D3QN)-based optimal resource allocation and a TUAV deployment algorithm to maximize the network-wide sum rate. By performing extensive simulations, it is shown that the proposed algorithm significantly improves the network-wide sum rate compared with several benchmark algorithms, such as the reward-optimal, random action, fixed channel allocation, fixed transmit power allocation, fixed TUAV positioning, distributed Q-learning, distributed DQN, and centralized DDQN algorithms.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 5","pages":"6276-6287"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D3QN-Based IAB Resource Allocation and Tethered UAV Positioning for IoT Networks\",\"authors\":\"Yerin Lee;Heejung Yu;Howon Lee;Mohamed-Slim Alouini\",\"doi\":\"10.1109/TITS.2025.3554538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of tethered uncrewed aerial vehicles (TUAVs) is promising for addressing the energy-constraint problems associated with battery-powered aerial vehicles. In addition, integrated access and backhaul (IAB) technology allows the simultaneous exploitation of the same frequency band for both access and backhaul links, thus increasing resource utilization efficiency in air-ground integrated Internet of Things (IoT) networks. However, the joint optimization of TUAV deployment and IAB bandwidth allocation is an extremely complicated problem, particularly when considering the dynamic characteristics of TUAV-aided IAB network environments. Therefore, we herein propose a distributed double deep Q-network (D3QN)-based optimal resource allocation and a TUAV deployment algorithm to maximize the network-wide sum rate. By performing extensive simulations, it is shown that the proposed algorithm significantly improves the network-wide sum rate compared with several benchmark algorithms, such as the reward-optimal, random action, fixed channel allocation, fixed transmit power allocation, fixed TUAV positioning, distributed Q-learning, distributed DQN, and centralized DDQN algorithms.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"26 5\",\"pages\":\"6276-6287\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10952373/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10952373/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

使用系留无人驾驶飞行器(tuav)有望解决与电池供电的飞行器相关的能量限制问题。此外,综合接入和回传(IAB)技术允许接入和回传链路同时使用同一频段,从而提高空地集成物联网(IoT)网络的资源利用效率。然而,TUAV部署和IAB带宽分配的联合优化是一个极其复杂的问题,特别是考虑到TUAV辅助IAB网络环境的动态特性。为此,我们提出了一种基于分布式双深度q网络(D3QN)的最优资源分配和TUAV部署算法,以最大化全网和速率。通过大量的仿真表明,与奖励最优、随机动作、固定信道分配、固定发射功率分配、固定TUAV定位、分布式Q-learning、分布式DQN和集中式DDQN算法等基准算法相比,该算法显著提高了全网和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D3QN-Based IAB Resource Allocation and Tethered UAV Positioning for IoT Networks
The use of tethered uncrewed aerial vehicles (TUAVs) is promising for addressing the energy-constraint problems associated with battery-powered aerial vehicles. In addition, integrated access and backhaul (IAB) technology allows the simultaneous exploitation of the same frequency band for both access and backhaul links, thus increasing resource utilization efficiency in air-ground integrated Internet of Things (IoT) networks. However, the joint optimization of TUAV deployment and IAB bandwidth allocation is an extremely complicated problem, particularly when considering the dynamic characteristics of TUAV-aided IAB network environments. Therefore, we herein propose a distributed double deep Q-network (D3QN)-based optimal resource allocation and a TUAV deployment algorithm to maximize the network-wide sum rate. By performing extensive simulations, it is shown that the proposed algorithm significantly improves the network-wide sum rate compared with several benchmark algorithms, such as the reward-optimal, random action, fixed channel allocation, fixed transmit power allocation, fixed TUAV positioning, distributed Q-learning, distributed DQN, and centralized DDQN algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信