自反Banach空间中非自治脉冲演化方程的解

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Weifeng Ma
{"title":"自反Banach空间中非自治脉冲演化方程的解","authors":"Weifeng Ma","doi":"10.1016/j.chaos.2025.116471","DOIUrl":null,"url":null,"abstract":"<div><div>In the case of the evolution system is non-compact, we deal with the existence of mild solutions for non-autonomous impulsive evolution equation on unbounded interval in a reflexive Banach space by applying the Hille–Yosida approximations of the infinitesimal generator of evolution system and finite dimensional reduction.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116471"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of non-autonomous impulsive evolution equation in reflexive Banach spaces\",\"authors\":\"Weifeng Ma\",\"doi\":\"10.1016/j.chaos.2025.116471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the case of the evolution system is non-compact, we deal with the existence of mild solutions for non-autonomous impulsive evolution equation on unbounded interval in a reflexive Banach space by applying the Hille–Yosida approximations of the infinitesimal generator of evolution system and finite dimensional reduction.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116471\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004849\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004849","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在演化系统非紧的情况下,利用演化系统的无穷小生成子的Hille-Yosida近似和有限维约简,讨论了反身Banach空间中无界区间上非自治脉冲演化方程温和解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of non-autonomous impulsive evolution equation in reflexive Banach spaces
In the case of the evolution system is non-compact, we deal with the existence of mild solutions for non-autonomous impulsive evolution equation on unbounded interval in a reflexive Banach space by applying the Hille–Yosida approximations of the infinitesimal generator of evolution system and finite dimensional reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信