{"title":"自反Banach空间中非自治脉冲演化方程的解","authors":"Weifeng Ma","doi":"10.1016/j.chaos.2025.116471","DOIUrl":null,"url":null,"abstract":"<div><div>In the case of the evolution system is non-compact, we deal with the existence of mild solutions for non-autonomous impulsive evolution equation on unbounded interval in a reflexive Banach space by applying the Hille–Yosida approximations of the infinitesimal generator of evolution system and finite dimensional reduction.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116471"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of non-autonomous impulsive evolution equation in reflexive Banach spaces\",\"authors\":\"Weifeng Ma\",\"doi\":\"10.1016/j.chaos.2025.116471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the case of the evolution system is non-compact, we deal with the existence of mild solutions for non-autonomous impulsive evolution equation on unbounded interval in a reflexive Banach space by applying the Hille–Yosida approximations of the infinitesimal generator of evolution system and finite dimensional reduction.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116471\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004849\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004849","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Solution of non-autonomous impulsive evolution equation in reflexive Banach spaces
In the case of the evolution system is non-compact, we deal with the existence of mild solutions for non-autonomous impulsive evolution equation on unbounded interval in a reflexive Banach space by applying the Hille–Yosida approximations of the infinitesimal generator of evolution system and finite dimensional reduction.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.