随机拟蒙特卡罗估计的偏度

IF 1.8 2区 数学 Q1 MATHEMATICS
Zexin Pan, Art B. Owen
{"title":"随机拟蒙特卡罗估计的偏度","authors":"Zexin Pan,&nbsp;Art B. Owen","doi":"10.1016/j.jco.2025.101956","DOIUrl":null,"url":null,"abstract":"<div><div>Some recent work on confidence intervals for randomized quasi-Monte Carlo (RQMC) sampling found a surprising result: ordinary Student's <em>t</em> 95% confidence intervals based on a modest number of replicates were seen to be very effective and even more reliable than some bootstrap <em>t</em> intervals that were expected to be best. One potential explanation is that those RQMC estimates have small skewness. In this paper we give conditions under which the skewness is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span> for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, so ‘almost <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>’. Under a random generator matrix model, we can improve this rate to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span> with very high probability. We also improve some probabilistic bounds on the distribution of the quality parameter <em>t</em> for a digital net in a prime base under random sampling of generator matrices.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"90 ","pages":"Article 101956"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skewness of a randomized quasi-Monte Carlo estimate\",\"authors\":\"Zexin Pan,&nbsp;Art B. Owen\",\"doi\":\"10.1016/j.jco.2025.101956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Some recent work on confidence intervals for randomized quasi-Monte Carlo (RQMC) sampling found a surprising result: ordinary Student's <em>t</em> 95% confidence intervals based on a modest number of replicates were seen to be very effective and even more reliable than some bootstrap <em>t</em> intervals that were expected to be best. One potential explanation is that those RQMC estimates have small skewness. In this paper we give conditions under which the skewness is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span> for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, so ‘almost <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>’. Under a random generator matrix model, we can improve this rate to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span> with very high probability. We also improve some probabilistic bounds on the distribution of the quality parameter <em>t</em> for a digital net in a prime base under random sampling of generator matrices.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"90 \",\"pages\":\"Article 101956\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X25000342\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000342","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近一些关于随机准蒙特卡罗(RQMC)抽样置信区间的研究发现了一个令人惊讶的结果:基于少量重复的普通学生的t 95%置信区间被认为是非常有效的,甚至比一些期望最好的bootstrap t区间更可靠。一种可能的解释是,RQMC的估计偏差很小。在本文中,我们给出了任意ϵ>;0的偏度为O(nλ)的条件,因此‘几乎为O(1) ’。在随机生成器矩阵模型下,我们可以以非常高的概率将该速率提高到O(n−1/2+ ε)。我们还改进了一个数字网络在质数基中质量参数t分布的一些概率界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skewness of a randomized quasi-Monte Carlo estimate
Some recent work on confidence intervals for randomized quasi-Monte Carlo (RQMC) sampling found a surprising result: ordinary Student's t 95% confidence intervals based on a modest number of replicates were seen to be very effective and even more reliable than some bootstrap t intervals that were expected to be best. One potential explanation is that those RQMC estimates have small skewness. In this paper we give conditions under which the skewness is O(nϵ) for any ϵ>0, so ‘almost O(1)’. Under a random generator matrix model, we can improve this rate to O(n1/2+ϵ) with very high probability. We also improve some probabilistic bounds on the distribution of the quality parameter t for a digital net in a prime base under random sampling of generator matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信