{"title":"活动的反转录转座子蛋白的结构和生化研究","authors":"Akanksha Thawani , Kathleen Collins , Eva Nogales","doi":"10.1016/j.sbi.2025.103053","DOIUrl":null,"url":null,"abstract":"<div><div>Autonomous non-long-terminal repeat (non-LTR) retrotransposons, including long interspersed elements (LINEs), are mobile genetic elements abundant in eukaryotic species that shape the genomic landscape and host physiology in both health and disease. Non-LTR retrotransposons create new genomic copies through a mechanism termed target-primed reverse transcription, where the retrotransposon-encoded protein nicks target DNA to prime reverse transcription templated by bound RNA, typically its own encoding mRNA. Until recently, structural information on non-LTR retrotransposons was lacking due to challenges in purification and reconstitution of active complexes. Recent biochemical studies and cryo-electron microscopy structures of complexes from insect, bird, and turtle site-specific R2 retrotransposons and the human LINE-1 retrotransposon have provided important insights. Here we discuss these studies and their implications for retrotransposon evolution and eukaryotic genome biology.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103053"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and biochemical studies of mobile retrotransposon proteins in action\",\"authors\":\"Akanksha Thawani , Kathleen Collins , Eva Nogales\",\"doi\":\"10.1016/j.sbi.2025.103053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autonomous non-long-terminal repeat (non-LTR) retrotransposons, including long interspersed elements (LINEs), are mobile genetic elements abundant in eukaryotic species that shape the genomic landscape and host physiology in both health and disease. Non-LTR retrotransposons create new genomic copies through a mechanism termed target-primed reverse transcription, where the retrotransposon-encoded protein nicks target DNA to prime reverse transcription templated by bound RNA, typically its own encoding mRNA. Until recently, structural information on non-LTR retrotransposons was lacking due to challenges in purification and reconstitution of active complexes. Recent biochemical studies and cryo-electron microscopy structures of complexes from insect, bird, and turtle site-specific R2 retrotransposons and the human LINE-1 retrotransposon have provided important insights. Here we discuss these studies and their implications for retrotransposon evolution and eukaryotic genome biology.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"92 \",\"pages\":\"Article 103053\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25000715\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000715","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural and biochemical studies of mobile retrotransposon proteins in action
Autonomous non-long-terminal repeat (non-LTR) retrotransposons, including long interspersed elements (LINEs), are mobile genetic elements abundant in eukaryotic species that shape the genomic landscape and host physiology in both health and disease. Non-LTR retrotransposons create new genomic copies through a mechanism termed target-primed reverse transcription, where the retrotransposon-encoded protein nicks target DNA to prime reverse transcription templated by bound RNA, typically its own encoding mRNA. Until recently, structural information on non-LTR retrotransposons was lacking due to challenges in purification and reconstitution of active complexes. Recent biochemical studies and cryo-electron microscopy structures of complexes from insect, bird, and turtle site-specific R2 retrotransposons and the human LINE-1 retrotransposon have provided important insights. Here we discuss these studies and their implications for retrotransposon evolution and eukaryotic genome biology.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation