{"title":"p(n)的五边形数递归关系","authors":"Kevin Gomez , Ken Ono , Hasan Saad , Ajit Singh","doi":"10.1016/j.aim.2025.110308","DOIUrl":null,"url":null,"abstract":"<div><div>We revisit Euler's partition function recurrence, which asserts, for integers <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>7</mn><mo>)</mo><mo>+</mo><mo>…</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>ω</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>(</mo><mn>3</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>m</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span> is the <em>m</em>th pentagonal number. We prove that this classical result is the <span><math><mi>ν</mi><mo>=</mo><mn>0</mn></math></span> case of an infinite family of “pentagonal number” recurrences. For each <span><math><mi>ν</mi><mo>≥</mo><mn>0</mn></math></span>, we prove for positive <em>n</em> that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mfrac><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⋅</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mspace></mspace><mrow><mo>+</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>⋅</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>)</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is a divisor function, <span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>n</em>th weight 2<em>ν</em> Hecke trace of values of special twisted quadratic Dirichlet series, and each <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is a polynomial in <em>n</em> and <em>k</em>. The <span><math><mi>ν</mi><mo>=</mo><mn>6</mn></math></span> case can be viewed as a partition theoretic formula for Ramanujan's tau-function, as we have<span><span><span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mo>−</mo><mfrac><mrow><mn>33108590592</mn></mrow><mrow><mn>691</mn></mrow></mfrac><mo>⋅</mo><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110308"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentagonal number recurrence relations for p(n)\",\"authors\":\"Kevin Gomez , Ken Ono , Hasan Saad , Ajit Singh\",\"doi\":\"10.1016/j.aim.2025.110308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We revisit Euler's partition function recurrence, which asserts, for integers <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>7</mn><mo>)</mo><mo>+</mo><mo>…</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>ω</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>(</mo><mn>3</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>m</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span> is the <em>m</em>th pentagonal number. We prove that this classical result is the <span><math><mi>ν</mi><mo>=</mo><mn>0</mn></math></span> case of an infinite family of “pentagonal number” recurrences. For each <span><math><mi>ν</mi><mo>≥</mo><mn>0</mn></math></span>, we prove for positive <em>n</em> that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mfrac><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⋅</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mspace></mspace><mrow><mo>+</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>⋅</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>)</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is a divisor function, <span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>n</em>th weight 2<em>ν</em> Hecke trace of values of special twisted quadratic Dirichlet series, and each <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is a polynomial in <em>n</em> and <em>k</em>. The <span><math><mi>ν</mi><mo>=</mo><mn>6</mn></math></span> case can be viewed as a partition theoretic formula for Ramanujan's tau-function, as we have<span><span><span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mo>−</mo><mfrac><mrow><mn>33108590592</mn></mrow><mrow><mn>691</mn></mrow></mfrac><mo>⋅</mo><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>.</mo></math></span></span></span></div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"474 \",\"pages\":\"Article 110308\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002063\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002063","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We revisit Euler's partition function recurrence, which asserts, for integers , that where is the mth pentagonal number. We prove that this classical result is the case of an infinite family of “pentagonal number” recurrences. For each , we prove for positive n that where is a divisor function, is the nth weight 2ν Hecke trace of values of special twisted quadratic Dirichlet series, and each is a polynomial in n and k. The case can be viewed as a partition theoretic formula for Ramanujan's tau-function, as we have
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.