p(n)的五边形数递归关系

IF 1.5 1区 数学 Q1 MATHEMATICS
Kevin Gomez , Ken Ono , Hasan Saad , Ajit Singh
{"title":"p(n)的五边形数递归关系","authors":"Kevin Gomez ,&nbsp;Ken Ono ,&nbsp;Hasan Saad ,&nbsp;Ajit Singh","doi":"10.1016/j.aim.2025.110308","DOIUrl":null,"url":null,"abstract":"<div><div>We revisit Euler's partition function recurrence, which asserts, for integers <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>7</mn><mo>)</mo><mo>+</mo><mo>…</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>ω</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>(</mo><mn>3</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>m</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span> is the <em>m</em>th pentagonal number. We prove that this classical result is the <span><math><mi>ν</mi><mo>=</mo><mn>0</mn></math></span> case of an infinite family of “pentagonal number” recurrences. For each <span><math><mi>ν</mi><mo>≥</mo><mn>0</mn></math></span>, we prove for positive <em>n</em> that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mfrac><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⋅</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mspace></mspace><mrow><mo>+</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>⋅</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>)</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is a divisor function, <span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>n</em>th weight 2<em>ν</em> Hecke trace of values of special twisted quadratic Dirichlet series, and each <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is a polynomial in <em>n</em> and <em>k</em>. The <span><math><mi>ν</mi><mo>=</mo><mn>6</mn></math></span> case can be viewed as a partition theoretic formula for Ramanujan's tau-function, as we have<span><span><span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mo>−</mo><mfrac><mrow><mn>33108590592</mn></mrow><mrow><mn>691</mn></mrow></mfrac><mo>⋅</mo><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110308"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentagonal number recurrence relations for p(n)\",\"authors\":\"Kevin Gomez ,&nbsp;Ken Ono ,&nbsp;Hasan Saad ,&nbsp;Ajit Singh\",\"doi\":\"10.1016/j.aim.2025.110308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We revisit Euler's partition function recurrence, which asserts, for integers <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo><mo>−</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>7</mn><mo>)</mo><mo>+</mo><mo>…</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>ω</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>(</mo><mn>3</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>m</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span> is the <em>m</em>th pentagonal number. We prove that this classical result is the <span><math><mi>ν</mi><mo>=</mo><mn>0</mn></math></span> case of an infinite family of “pentagonal number” recurrences. For each <span><math><mi>ν</mi><mo>≥</mo><mn>0</mn></math></span>, we prove for positive <em>n</em> that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mfrac><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⋅</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mspace></mspace><mrow><mo>+</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>⋅</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo><mo>)</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>ν</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is a divisor function, <span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>2</mn><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>n</em>th weight 2<em>ν</em> Hecke trace of values of special twisted quadratic Dirichlet series, and each <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is a polynomial in <em>n</em> and <em>k</em>. The <span><math><mi>ν</mi><mo>=</mo><mn>6</mn></math></span> case can be viewed as a partition theoretic formula for Ramanujan's tau-function, as we have<span><span><span><math><msub><mrow><mi>Tr</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mo>−</mo><mfrac><mrow><mn>33108590592</mn></mrow><mrow><mn>691</mn></mrow></mfrac><mo>⋅</mo><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>.</mo></math></span></span></span></div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"474 \",\"pages\":\"Article 110308\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002063\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002063","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们重新讨论欧拉配分函数递推式,它断言,对于整数n≥1,p(n)=p(n−1)+p(n−2)- p(n−5)- p(n−7)+…=∑k∈Z∈{0}(−1)k+1p(n−ω(k)),其中ω(m):=(3m2+m)/2是第m个五边形数。我们证明了这一经典结果是ν=0的无限“五边形数”递推族的情况。对于每个ν≥0,我们证明了对于正n p(n)=1gν(n,0)(αν⋅σ2ν - 1(n)+Tr2ν(n)+∑k∈Z∈{0}(- 1)k+1gν(n,k)·p(n - ω(k)),其中σ2ν - 1(n)是一个除数函数,Tr2ν(n)是特殊扭曲二次Dirichlet级数值的第n个权2ν Hecke迹,每个gν(n,k)是n和k的多项式。ν=6的情况可以看作是拉马努金τ函数的一个配分理论公式,我们有tr12 (n)= - 33108590592691。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pentagonal number recurrence relations for p(n)
We revisit Euler's partition function recurrence, which asserts, for integers n1, thatp(n)=p(n1)+p(n2)p(n5)p(n7)+=kZ{0}(1)k+1p(nω(k)), where ω(m):=(3m2+m)/2 is the mth pentagonal number. We prove that this classical result is the ν=0 case of an infinite family of “pentagonal number” recurrences. For each ν0, we prove for positive n thatp(n)=1gν(n,0)(ανσ2ν1(n)+Tr2ν(n)+kZ{0}(1)k+1gν(n,k)p(nω(k))), where σ2ν1(n) is a divisor function, Tr2ν(n) is the nth weight 2ν Hecke trace of values of special twisted quadratic Dirichlet series, and each gν(n,k) is a polynomial in n and k. The ν=6 case can be viewed as a partition theoretic formula for Ramanujan's tau-function, as we haveTr12(n)=33108590592691τ(n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信