非负Ricci曲率,无穷远处的几乎稳定性,以及基本群的结构

IF 1.5 1区 数学 Q1 MATHEMATICS
Jiayin Pan
{"title":"非负Ricci曲率,无穷远处的几乎稳定性,以及基本群的结构","authors":"Jiayin Pan","doi":"10.1016/j.aim.2025.110310","DOIUrl":null,"url":null,"abstract":"<div><div>We study the fundamental group of an open <em>n</em>-manifold <em>M</em> of nonnegative Ricci curvature with additional stability conditions on <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, the Riemannian universal cover of <em>M</em>. We prove that if every asymptotic cone of <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is a metric cone, whose cross-section is sufficiently Gromov-Hausdorff close to a prior fixed metric cone, then <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is finitely generated and contains a normal abelian subgroup of finite index; if in addition <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> has Euclidean volume growth of constant at least <em>L</em>, then we can bound the index of that abelian subgroup by a constant <span><math><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span>. In particular, our result implies that if <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> has Euclidean volume growth of constant at least <span><math><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is finitely generated and <span><math><mi>C</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-abelian.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110310"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegative Ricci curvature, almost stability at infinity, and structure of fundamental groups\",\"authors\":\"Jiayin Pan\",\"doi\":\"10.1016/j.aim.2025.110310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the fundamental group of an open <em>n</em>-manifold <em>M</em> of nonnegative Ricci curvature with additional stability conditions on <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, the Riemannian universal cover of <em>M</em>. We prove that if every asymptotic cone of <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is a metric cone, whose cross-section is sufficiently Gromov-Hausdorff close to a prior fixed metric cone, then <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is finitely generated and contains a normal abelian subgroup of finite index; if in addition <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> has Euclidean volume growth of constant at least <em>L</em>, then we can bound the index of that abelian subgroup by a constant <span><math><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span>. In particular, our result implies that if <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> has Euclidean volume growth of constant at least <span><math><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is finitely generated and <span><math><mi>C</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-abelian.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"474 \",\"pages\":\"Article 110310\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002087\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002087","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有附加稳定性条件的非负Ricci曲率的开放n流形M在M ~上的基本群,即M的黎曼泛覆盖。证明了如果M ~的每一个渐近锥都是一个度量锥,其截面与一个先验的固定度量锥足够Gromov-Hausdorff,则π1(M)是有限生成的,并且包含一个有限指标的正规阿贝尔子群;如果M ~具有至少L的欧几里得体积增长常数,那么我们可以用常数C(n,L)来约束该阿贝尔子群的指标。特别地,我们的结果表明,如果M ~具有至少1−λ (n)常数的欧几里得体积增长,则π1(M)是有限生成的,并且C(n)是阿贝尔的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonnegative Ricci curvature, almost stability at infinity, and structure of fundamental groups
We study the fundamental group of an open n-manifold M of nonnegative Ricci curvature with additional stability conditions on M˜, the Riemannian universal cover of M. We prove that if every asymptotic cone of M˜ is a metric cone, whose cross-section is sufficiently Gromov-Hausdorff close to a prior fixed metric cone, then π1(M) is finitely generated and contains a normal abelian subgroup of finite index; if in addition M˜ has Euclidean volume growth of constant at least L, then we can bound the index of that abelian subgroup by a constant C(n,L). In particular, our result implies that if M˜ has Euclidean volume growth of constant at least 1ϵ(n), then π1(M) is finitely generated and C(n)-abelian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信