验证海洋模式数据集的拉格朗日不确定性量化方法

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Guillermo García-Sánchez , Makrina Agaoglou , Evanne Marie Claire Smith , Ana Maria Mancho
{"title":"验证海洋模式数据集的拉格朗日不确定性量化方法","authors":"Guillermo García-Sánchez ,&nbsp;Makrina Agaoglou ,&nbsp;Evanne Marie Claire Smith ,&nbsp;Ana Maria Mancho","doi":"10.1016/j.physd.2025.134690","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a methodology to measure how well the material transport produced by different ocean models aligns with observational data, using their trajectories as a basis for comparison. To this end, recent results that relate an uncertainty metric to invariant dynamic structures are used. These connections shed light on how to implement statistical averaging strategies to systematically assess the quality of the ocean data set and its performance in terms of Lagrangian transport. The method is applied using both reanalysis and analysis data in the North Atlantic, where observed drifter trajectory data serve as benchmarks for validation. To assess the reliability of the proposed methodology, it is tested alongside a comparable, purpose-built example conducted under controlled conditions within the same region. We present evidence that the proposed methodology provides valuable information on model performance on different spatial and temporal scales.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134690"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lagrangian uncertainty quantification approach to validate ocean model datasets\",\"authors\":\"Guillermo García-Sánchez ,&nbsp;Makrina Agaoglou ,&nbsp;Evanne Marie Claire Smith ,&nbsp;Ana Maria Mancho\",\"doi\":\"10.1016/j.physd.2025.134690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a methodology to measure how well the material transport produced by different ocean models aligns with observational data, using their trajectories as a basis for comparison. To this end, recent results that relate an uncertainty metric to invariant dynamic structures are used. These connections shed light on how to implement statistical averaging strategies to systematically assess the quality of the ocean data set and its performance in terms of Lagrangian transport. The method is applied using both reanalysis and analysis data in the North Atlantic, where observed drifter trajectory data serve as benchmarks for validation. To assess the reliability of the proposed methodology, it is tested alongside a comparable, purpose-built example conducted under controlled conditions within the same region. We present evidence that the proposed methodology provides valuable information on model performance on different spatial and temporal scales.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134690\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925001678\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001678","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种方法来衡量不同海洋模型产生的物质运输与观测数据的一致性,使用它们的轨迹作为比较的基础。为此,使用了与不变动态结构相关的不确定性度量的最新结果。这些联系揭示了如何实施统计平均策略来系统地评估海洋数据集的质量及其在拉格朗日输运方面的表现。该方法应用于北大西洋的再分析和分析数据,其中观察到的漂浮物轨迹数据作为验证的基准。为了评估所提出的方法的可靠性,在同一地区的受控条件下,与一个可比较的、专门建造的例子一起进行了测试。我们提出的证据表明,所提出的方法提供了在不同空间和时间尺度上的模型性能的有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lagrangian uncertainty quantification approach to validate ocean model datasets
This work presents a methodology to measure how well the material transport produced by different ocean models aligns with observational data, using their trajectories as a basis for comparison. To this end, recent results that relate an uncertainty metric to invariant dynamic structures are used. These connections shed light on how to implement statistical averaging strategies to systematically assess the quality of the ocean data set and its performance in terms of Lagrangian transport. The method is applied using both reanalysis and analysis data in the North Atlantic, where observed drifter trajectory data serve as benchmarks for validation. To assess the reliability of the proposed methodology, it is tested alongside a comparable, purpose-built example conducted under controlled conditions within the same region. We present evidence that the proposed methodology provides valuable information on model performance on different spatial and temporal scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信