ZNF574是缺陷核糖体生物发生中间体的质量控制因子

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jared F. Akers, Michael LaScola, Adrian Bothe, Hanna Suh, Carmen Jung, Zachary D. Stolp, Tanushree Ghosh, Liewei L. Yan, Yuming Wang, Michelle Macurak, Amisha Devan, Mary C. McKinney, Tarabryn S. Grismer, Andres V. Reyes, Eric J. Ross, Tianyi Hu, Shou-Ling Xu, Nenad Ban, Kamena K. Kostova
{"title":"ZNF574是缺陷核糖体生物发生中间体的质量控制因子","authors":"Jared F. Akers, Michael LaScola, Adrian Bothe, Hanna Suh, Carmen Jung, Zachary D. Stolp, Tanushree Ghosh, Liewei L. Yan, Yuming Wang, Michelle Macurak, Amisha Devan, Mary C. McKinney, Tarabryn S. Grismer, Andres V. Reyes, Eric J. Ross, Tianyi Hu, Shou-Ling Xu, Nenad Ban, Kamena K. Kostova","doi":"10.1016/j.molcel.2025.04.017","DOIUrl":null,"url":null,"abstract":"Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that participate in numerous interdependent steps. The complexity and essentiality of this process create opportunities for deleterious mutations to occur, accumulate, and impact downstream cellular processes. “Dead-end” ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control (QC) pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on-path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin-proteasome system. We identified <em>ZNF574</em> as a key component of a QC pathway, which we term the ribosome assembly surveillance pathway (RASP). In an animal model, loss of ZNF574 leads to developmental defects, emphasizing the importance of RASP in organismal health.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"225 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZNF574 is a quality control factor for defective ribosome biogenesis intermediates\",\"authors\":\"Jared F. Akers, Michael LaScola, Adrian Bothe, Hanna Suh, Carmen Jung, Zachary D. Stolp, Tanushree Ghosh, Liewei L. Yan, Yuming Wang, Michelle Macurak, Amisha Devan, Mary C. McKinney, Tarabryn S. Grismer, Andres V. Reyes, Eric J. Ross, Tianyi Hu, Shou-Ling Xu, Nenad Ban, Kamena K. Kostova\",\"doi\":\"10.1016/j.molcel.2025.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that participate in numerous interdependent steps. The complexity and essentiality of this process create opportunities for deleterious mutations to occur, accumulate, and impact downstream cellular processes. “Dead-end” ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control (QC) pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on-path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin-proteasome system. We identified <em>ZNF574</em> as a key component of a QC pathway, which we term the ribosome assembly surveillance pathway (RASP). In an animal model, loss of ZNF574 leads to developmental defects, emphasizing the importance of RASP in organismal health.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"225 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2025.04.017\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.04.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真核核糖体组装是一个复杂的过程,涉及4种核糖体rna、80种核糖体蛋白和200多种生物发生因子,它们参与了许多相互依存的步骤。这一过程的复杂性和必要性为有害突变的发生、积累和影响下游细胞过程创造了机会。生物发生错误导致的“死端”核糖体中间体迅速降解,证实了监测核糖体组装的质量控制(QC)途径的存在。然而,区分通路和死角中间体的因素尚不清楚。我们设计了一个系统来干扰人类细胞中的核糖体组装,并发现有缺陷的核糖体通过泛素-蛋白酶体系统被降解。我们确定ZNF574是QC途径的关键组成部分,我们称之为核糖体组装监视途径(RASP)。在动物模型中,ZNF574的缺失导致发育缺陷,强调了RASP在机体健康中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ZNF574 is a quality control factor for defective ribosome biogenesis intermediates

ZNF574 is a quality control factor for defective ribosome biogenesis intermediates
Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that participate in numerous interdependent steps. The complexity and essentiality of this process create opportunities for deleterious mutations to occur, accumulate, and impact downstream cellular processes. “Dead-end” ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control (QC) pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on-path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin-proteasome system. We identified ZNF574 as a key component of a QC pathway, which we term the ribosome assembly surveillance pathway (RASP). In an animal model, loss of ZNF574 leads to developmental defects, emphasizing the importance of RASP in organismal health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信