金/钙钛矿量子点超表面的选择性定向增强

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammad Adnan, Swagato Sarkar, Olha Aftenieva, Julius Brunner, Andreas Fery, Yana Vaynzof, Tobias A.F. König
{"title":"金/钙钛矿量子点超表面的选择性定向增强","authors":"Mohammad Adnan,&nbsp;Swagato Sarkar,&nbsp;Olha Aftenieva,&nbsp;Julius Brunner,&nbsp;Andreas Fery,&nbsp;Yana Vaynzof,&nbsp;Tobias A.F. König","doi":"10.1002/adom.202403397","DOIUrl":null,"url":null,"abstract":"<p>Controlling directional radiation with minimal loss and fabrication effort through scalable methods is essential for integrating metasurfaces into photonic devices. Existing strategies enable tuning radiation properties by altering optical parameters of subwavelength dielectric gratings. Herein, a simple method is demonstrated to control the radiation direction of perovskite quantum dot (QD) metasurfaces through the addition of thin gold layers. This approach utilizes hybrid plasmonic modes and defect-free, template-assisted self-assembly techniques for low-loss, large-area production. This colloidal method allows precise control over nanostructure formation, ensuring reproducibility and enhanced optical properties. A 4.6-fold enhancement of the radiation toward the substrate and a 4.4-fold enhancement toward the cover region is achieved by evaporating a thin gold film with an optimal periodicity of 500 nm. Notably, the insertion of a metal layer allows the cover mode to exhibit enhancements that exceed typical expectations for plasmonic metasurfaces. This design is supported by plasmonic lattice theory and validated by electromagnetic modeling, allowing the gamma point to be customized to enhance emission in specific directions and media directly. This rational design strategy enhances the functionality of plasmonic perovskite-based metasurfaces for photonic on-chip applications, including nonlinear light-emitting devices and directional light sources.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 13","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202403397","citationCount":"0","resultStr":"{\"title\":\"Selective Directional Enhancement in Gold/Perovskite Quantum Dot Metasurfaces\",\"authors\":\"Mohammad Adnan,&nbsp;Swagato Sarkar,&nbsp;Olha Aftenieva,&nbsp;Julius Brunner,&nbsp;Andreas Fery,&nbsp;Yana Vaynzof,&nbsp;Tobias A.F. König\",\"doi\":\"10.1002/adom.202403397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Controlling directional radiation with minimal loss and fabrication effort through scalable methods is essential for integrating metasurfaces into photonic devices. Existing strategies enable tuning radiation properties by altering optical parameters of subwavelength dielectric gratings. Herein, a simple method is demonstrated to control the radiation direction of perovskite quantum dot (QD) metasurfaces through the addition of thin gold layers. This approach utilizes hybrid plasmonic modes and defect-free, template-assisted self-assembly techniques for low-loss, large-area production. This colloidal method allows precise control over nanostructure formation, ensuring reproducibility and enhanced optical properties. A 4.6-fold enhancement of the radiation toward the substrate and a 4.4-fold enhancement toward the cover region is achieved by evaporating a thin gold film with an optimal periodicity of 500 nm. Notably, the insertion of a metal layer allows the cover mode to exhibit enhancements that exceed typical expectations for plasmonic metasurfaces. This design is supported by plasmonic lattice theory and validated by electromagnetic modeling, allowing the gamma point to be customized to enhance emission in specific directions and media directly. This rational design strategy enhances the functionality of plasmonic perovskite-based metasurfaces for photonic on-chip applications, including nonlinear light-emitting devices and directional light sources.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 13\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202403397\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403397\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403397","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过可扩展的方法以最小的损耗和制造努力控制定向辐射是将超表面集成到光子器件中的必要条件。现有的策略可以通过改变亚波长介质光栅的光学参数来调整辐射特性。本文演示了一种通过添加薄金层来控制钙钛矿量子点超表面辐射方向的简单方法。该方法利用混合等离子体模式和无缺陷的模板辅助自组装技术,实现低损耗、大面积生产。这种胶体方法可以精确控制纳米结构的形成,确保再现性和增强的光学特性。通过蒸发具有最佳周期为500 nm的薄金膜,可以实现对衬底的辐射增强4.6倍,对覆盖区域的辐射增强4.4倍。值得注意的是,金属层的插入允许覆盖模式显示出超出等离子体超表面典型预期的增强。该设计得到了等离子体晶格理论的支持,并通过电磁建模进行了验证,允许定制伽马点,以直接增强特定方向和介质的发射。这种合理的设计策略增强了等离子体钙钛矿基超表面在光子片上应用的功能,包括非线性发光器件和定向光源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selective Directional Enhancement in Gold/Perovskite Quantum Dot Metasurfaces

Selective Directional Enhancement in Gold/Perovskite Quantum Dot Metasurfaces

Controlling directional radiation with minimal loss and fabrication effort through scalable methods is essential for integrating metasurfaces into photonic devices. Existing strategies enable tuning radiation properties by altering optical parameters of subwavelength dielectric gratings. Herein, a simple method is demonstrated to control the radiation direction of perovskite quantum dot (QD) metasurfaces through the addition of thin gold layers. This approach utilizes hybrid plasmonic modes and defect-free, template-assisted self-assembly techniques for low-loss, large-area production. This colloidal method allows precise control over nanostructure formation, ensuring reproducibility and enhanced optical properties. A 4.6-fold enhancement of the radiation toward the substrate and a 4.4-fold enhancement toward the cover region is achieved by evaporating a thin gold film with an optimal periodicity of 500 nm. Notably, the insertion of a metal layer allows the cover mode to exhibit enhancements that exceed typical expectations for plasmonic metasurfaces. This design is supported by plasmonic lattice theory and validated by electromagnetic modeling, allowing the gamma point to be customized to enhance emission in specific directions and media directly. This rational design strategy enhances the functionality of plasmonic perovskite-based metasurfaces for photonic on-chip applications, including nonlinear light-emitting devices and directional light sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信