基于角度度量学习的车辆再识别判别特征

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yutong Xie, Shuoqi Zhang, Lide Guo, Yuming Liu, Rukai Wei, Yanzhao Xie, Yangtao Wang, Maobin Tang, Lisheng Fan
{"title":"基于角度度量学习的车辆再识别判别特征","authors":"Yutong Xie,&nbsp;Shuoqi Zhang,&nbsp;Lide Guo,&nbsp;Yuming Liu,&nbsp;Rukai Wei,&nbsp;Yanzhao Xie,&nbsp;Yangtao Wang,&nbsp;Maobin Tang,&nbsp;Lisheng Fan","doi":"10.1049/cvi2.70015","DOIUrl":null,"url":null,"abstract":"<p>Vehicle re-identification (Re-ID) facilitates the recognition and distinction of vehicles based on their visual characteristics in images or videos. However, accurately identifying a vehicle poses great challenges due to (i) the pronounced intra-instance variations encountered under varying lighting conditions such as day and night and (ii) the subtle inter-instance differences observed among similar vehicles. To address these challenges, the authors propose <b>A</b>ngle <b>M</b>etric learning for <b>D</b>iscriminative <b>F</b>eatures on vehicle Re-ID (termed as AMDF), which aims to maximise the variance between visual features of different classes while minimising the variance within the same class. AMDF comprehensively measures the angle and distance discrepancies between features. First, to mitigate the impact of lighting conditions on intra-class variation, the authors employ CycleGAN to generate images that simulate consistent lighting (either day or night), thereby standardising the conditions for distance measurement. Second, Swin Transformer was integrated to help generate more detailed features. At last, a novel angle metric loss based on cosine distance is proposed, which organically integrates angular metric and 2-norm metric, effectively maximising the decision boundary in angular space. Extensive experimental evaluations on three public datasets including VERI-776, VERI-Wild, and VEHICLEID, indicate that the method achieves state-of-the-art performance. The code of this project is released at https://github.com/ZnCu-0906/AMDF.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70015","citationCount":"0","resultStr":"{\"title\":\"Angle Metric Learning for Discriminative Features on Vehicle Re-Identification\",\"authors\":\"Yutong Xie,&nbsp;Shuoqi Zhang,&nbsp;Lide Guo,&nbsp;Yuming Liu,&nbsp;Rukai Wei,&nbsp;Yanzhao Xie,&nbsp;Yangtao Wang,&nbsp;Maobin Tang,&nbsp;Lisheng Fan\",\"doi\":\"10.1049/cvi2.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vehicle re-identification (Re-ID) facilitates the recognition and distinction of vehicles based on their visual characteristics in images or videos. However, accurately identifying a vehicle poses great challenges due to (i) the pronounced intra-instance variations encountered under varying lighting conditions such as day and night and (ii) the subtle inter-instance differences observed among similar vehicles. To address these challenges, the authors propose <b>A</b>ngle <b>M</b>etric learning for <b>D</b>iscriminative <b>F</b>eatures on vehicle Re-ID (termed as AMDF), which aims to maximise the variance between visual features of different classes while minimising the variance within the same class. AMDF comprehensively measures the angle and distance discrepancies between features. First, to mitigate the impact of lighting conditions on intra-class variation, the authors employ CycleGAN to generate images that simulate consistent lighting (either day or night), thereby standardising the conditions for distance measurement. Second, Swin Transformer was integrated to help generate more detailed features. At last, a novel angle metric loss based on cosine distance is proposed, which organically integrates angular metric and 2-norm metric, effectively maximising the decision boundary in angular space. Extensive experimental evaluations on three public datasets including VERI-776, VERI-Wild, and VEHICLEID, indicate that the method achieves state-of-the-art performance. The code of this project is released at https://github.com/ZnCu-0906/AMDF.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70015\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

车辆再识别(Re-ID)是一种基于图像或视频中车辆的视觉特征来识别和区分车辆的技术。然而,准确识别车辆带来了巨大的挑战,因为(i)在不同的光照条件下(如白天和黑夜)会遇到明显的实例内差异,(ii)在类似车辆之间观察到的微妙的实例间差异。为了解决这些挑战,作者提出了针对车辆Re-ID的区别特征的角度度量学习(称为AMDF),其目的是最大化不同类别的视觉特征之间的方差,同时最小化同一类别内的方差。AMDF全面测量特征之间的角度和距离差异。首先,为了减轻光照条件对类内变化的影响,作者使用CycleGAN来生成模拟一致光照(白天或夜晚)的图像,从而标准化距离测量的条件。其次,集成了Swin Transformer以帮助生成更详细的特性。最后,提出了一种基于余弦距离的角度量损失算法,将角度量和二范数度量有机地结合起来,有效地实现了角空间决策边界的最大化。在包括VERI-776、VERI-Wild和VEHICLEID在内的三个公共数据集上进行的广泛实验评估表明,该方法达到了最先进的性能。这个项目的代码发布在https://github.com/ZnCu-0906/AMDF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Angle Metric Learning for Discriminative Features on Vehicle Re-Identification

Angle Metric Learning for Discriminative Features on Vehicle Re-Identification

Vehicle re-identification (Re-ID) facilitates the recognition and distinction of vehicles based on their visual characteristics in images or videos. However, accurately identifying a vehicle poses great challenges due to (i) the pronounced intra-instance variations encountered under varying lighting conditions such as day and night and (ii) the subtle inter-instance differences observed among similar vehicles. To address these challenges, the authors propose Angle Metric learning for Discriminative Features on vehicle Re-ID (termed as AMDF), which aims to maximise the variance between visual features of different classes while minimising the variance within the same class. AMDF comprehensively measures the angle and distance discrepancies between features. First, to mitigate the impact of lighting conditions on intra-class variation, the authors employ CycleGAN to generate images that simulate consistent lighting (either day or night), thereby standardising the conditions for distance measurement. Second, Swin Transformer was integrated to help generate more detailed features. At last, a novel angle metric loss based on cosine distance is proposed, which organically integrates angular metric and 2-norm metric, effectively maximising the decision boundary in angular space. Extensive experimental evaluations on three public datasets including VERI-776, VERI-Wild, and VEHICLEID, indicate that the method achieves state-of-the-art performance. The code of this project is released at https://github.com/ZnCu-0906/AMDF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信