加权p-拉普拉斯方程的博弈解释

IF 1.3 2区 数学 Q1 MATHEMATICS
Mamoru Aihara
{"title":"加权p-拉普拉斯方程的博弈解释","authors":"Mamoru Aihara","doi":"10.1016/j.na.2025.113829","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we obtain a stochastic approximation that converges to the viscosity solution of the weighted <span><math><mi>p</mi></math></span>-Laplace equation. We consider a stochastic two-player zero-sum game controlled by a random walk, two player’s choices, and the gradient of the weight function. The proof is based on the boundary conditions in the viscosity sense and the comparison principle. These results extend previous findings for the non-weighted <span><math><mi>p</mi></math></span>-Laplace equation (Manfredi et al., 2012). In addition, we study the limiting behavior of the viscosity solution of the weighted <span><math><mi>p</mi></math></span>-Laplace equation as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"259 ","pages":"Article 113829"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A game interpretation for the weighted p-Laplace equation\",\"authors\":\"Mamoru Aihara\",\"doi\":\"10.1016/j.na.2025.113829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we obtain a stochastic approximation that converges to the viscosity solution of the weighted <span><math><mi>p</mi></math></span>-Laplace equation. We consider a stochastic two-player zero-sum game controlled by a random walk, two player’s choices, and the gradient of the weight function. The proof is based on the boundary conditions in the viscosity sense and the comparison principle. These results extend previous findings for the non-weighted <span><math><mi>p</mi></math></span>-Laplace equation (Manfredi et al., 2012). In addition, we study the limiting behavior of the viscosity solution of the weighted <span><math><mi>p</mi></math></span>-Laplace equation as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"259 \",\"pages\":\"Article 113829\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000835\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000835","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们得到了一个收敛于加权p-拉普拉斯方程粘度解的随机近似。我们考虑一个随机的二人零和博弈,由随机游走、两个人的选择和权重函数的梯度控制。该证明基于黏度意义上的边界条件和比较原理。这些结果扩展了之前关于非加权p-拉普拉斯方程的发现(Manfredi et al., 2012)。此外,我们研究了p-拉普拉斯方程在p→∞时粘度解的极限行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A game interpretation for the weighted p-Laplace equation
In this paper, we obtain a stochastic approximation that converges to the viscosity solution of the weighted p-Laplace equation. We consider a stochastic two-player zero-sum game controlled by a random walk, two player’s choices, and the gradient of the weight function. The proof is based on the boundary conditions in the viscosity sense and the comparison principle. These results extend previous findings for the non-weighted p-Laplace equation (Manfredi et al., 2012). In addition, we study the limiting behavior of the viscosity solution of the weighted p-Laplace equation as p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信