基于深度学习的核电功率预测与故障检测双监测系统

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingzhe Lyu , Helin Gong , Zhang Chen , Jiangyu Wang , Mingxiao Zhong , Zhiyong Wang , Qing Li , Zefei Pan
{"title":"基于深度学习的核电功率预测与故障检测双监测系统","authors":"Mingzhe Lyu ,&nbsp;Helin Gong ,&nbsp;Zhang Chen ,&nbsp;Jiangyu Wang ,&nbsp;Mingxiao Zhong ,&nbsp;Zhiyong Wang ,&nbsp;Qing Li ,&nbsp;Zefei Pan","doi":"10.1016/j.egyai.2025.100515","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring key parameters in nuclear power plant control rooms is critical, as human errors can result in severe safety and operational consequences. This study proposes a hybrid framework for power prediction and fault detection that integrates multi-head self-attention mechanisms with long short-term memory networks, combined with a dual-monitoring system. The framework is evaluated using real-time data from two pressurized water reactor units (Units 5 and 6) under four realistic operational scenarios. In the most informative case, the model achieves a 56.6% reduction in root mean square error and a 36.8% reduction in mean absolute error, with a coefficient of determination (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of 0.9924—significantly outperforming the next-best benchmark. For fault diagnosis, the dual-monitoring system reduces the false negative rate to 18.73% and improves recall to 81.27%, demonstrating strong anomaly detection under complex conditions. By combining short-term fluctuation sensitivity with long-term trend stability, the proposed approach offers a robust and generalizable solution for intelligent monitoring. These findings advance the development of artificial intelligence–enhanced systems for secure and efficient operation of critical energy infrastructure.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100515"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based dual monitoring system for power forecasting and fault detection in nuclear power applications\",\"authors\":\"Mingzhe Lyu ,&nbsp;Helin Gong ,&nbsp;Zhang Chen ,&nbsp;Jiangyu Wang ,&nbsp;Mingxiao Zhong ,&nbsp;Zhiyong Wang ,&nbsp;Qing Li ,&nbsp;Zefei Pan\",\"doi\":\"10.1016/j.egyai.2025.100515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring key parameters in nuclear power plant control rooms is critical, as human errors can result in severe safety and operational consequences. This study proposes a hybrid framework for power prediction and fault detection that integrates multi-head self-attention mechanisms with long short-term memory networks, combined with a dual-monitoring system. The framework is evaluated using real-time data from two pressurized water reactor units (Units 5 and 6) under four realistic operational scenarios. In the most informative case, the model achieves a 56.6% reduction in root mean square error and a 36.8% reduction in mean absolute error, with a coefficient of determination (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of 0.9924—significantly outperforming the next-best benchmark. For fault diagnosis, the dual-monitoring system reduces the false negative rate to 18.73% and improves recall to 81.27%, demonstrating strong anomaly detection under complex conditions. By combining short-term fluctuation sensitivity with long-term trend stability, the proposed approach offers a robust and generalizable solution for intelligent monitoring. These findings advance the development of artificial intelligence–enhanced systems for secure and efficient operation of critical energy infrastructure.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"20 \",\"pages\":\"Article 100515\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825000473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

监测核电站控制室的关键参数至关重要,因为人为错误可能导致严重的安全和运行后果。本研究提出了一个电力预测和故障检测的混合框架,该框架将多头自注意机制与长短期记忆网络相结合,并结合双重监测系统。该框架使用来自两个压水反应堆机组(5号机组和6号机组)在四种实际运行情景下的实时数据进行评估。在信息量最大的情况下,该模型的均方根误差降低了56.6%,平均绝对误差降低了36.8%,决定系数(R2)为0.9924,显著优于次优基准。在故障诊断方面,双监测系统将假阴性率降低到18.73%,召回率提高到81.27%,在复杂条件下表现出较强的异常检测能力。该方法将短期波动敏感性与长期趋势稳定性相结合,为智能监测提供了鲁棒性和通用性强的解决方案。这些发现推动了人工智能增强系统的发展,以确保关键能源基础设施的安全和高效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-based dual monitoring system for power forecasting and fault detection in nuclear power applications

Deep learning-based dual monitoring system for power forecasting and fault detection in nuclear power applications
Monitoring key parameters in nuclear power plant control rooms is critical, as human errors can result in severe safety and operational consequences. This study proposes a hybrid framework for power prediction and fault detection that integrates multi-head self-attention mechanisms with long short-term memory networks, combined with a dual-monitoring system. The framework is evaluated using real-time data from two pressurized water reactor units (Units 5 and 6) under four realistic operational scenarios. In the most informative case, the model achieves a 56.6% reduction in root mean square error and a 36.8% reduction in mean absolute error, with a coefficient of determination (R2) of 0.9924—significantly outperforming the next-best benchmark. For fault diagnosis, the dual-monitoring system reduces the false negative rate to 18.73% and improves recall to 81.27%, demonstrating strong anomaly detection under complex conditions. By combining short-term fluctuation sensitivity with long-term trend stability, the proposed approach offers a robust and generalizable solution for intelligent monitoring. These findings advance the development of artificial intelligence–enhanced systems for secure and efficient operation of critical energy infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信