{"title":"探索金属配合物治疗癌症:机制的见解和治疗潜力","authors":"Pandey Priya Arun , Ritu Raj Patel , Sudhir Kumar Singh , Kailash Parmar , Meenakshi Singh","doi":"10.1016/j.jorganchem.2025.123682","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research in the field of cancer therapeutics has explored various potential drug treatments supported by metal- based scaffolds, following the investigation and clinical application of cisplatin, which has emerged as an active anti- cancer drug. Organometallic compounds have gained significant attention in cancer therapy due to their unique ability to interact with biomolecules, providing targeted and efficient anticancer activity. This has led to the development of metallodrugs, which encompass metal-based compounds with a wider range of functionalities and mechanisms of action compared to organic molecules. However, platinum-based metal complexes have limitations in their spectrum of anti-cancer activities, often resulting in side effects and resistance. To address these challenges, extensive research has been conducted to study and develop effective alternatives to platinum-based anticancer medications, encompassing metals such as ruthenium, vanadium, copper, iron, manganese, zinc, and cobalt. Metallodrugs represent a promising new category of potential cancer treatments, renewing interest in pursuing effective anti-cancer therapies. Nanomedicine strategies offer an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and enhance therapeutic efficacy. Multifunctional nanomaterials have demonstrated the ability to improve drug delivery by increasing bioavailability and optimizing pharmacokinetics, thereby enhancing the effectiveness of chemotherapeutic agents in overcoming multidrug resistance (MDR). By gaining a deeper understanding of their distinct characteristics and mechanisms of action, there is potential to explore avenues for developing targeted and effective anti-cancer treatments. This review explores the intricate details of various metal complexes, highlighting their unique properties and modes of action in combating cancer while providing valuable insights into their potential as promising agents for developing effective and targeted anticancer therapies, paving the way for future advancements in the field.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1035 ","pages":"Article 123682"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Metal Complexes for Cancer Treatment: Mechanistic Insights and Therapeutic Potential\",\"authors\":\"Pandey Priya Arun , Ritu Raj Patel , Sudhir Kumar Singh , Kailash Parmar , Meenakshi Singh\",\"doi\":\"10.1016/j.jorganchem.2025.123682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent research in the field of cancer therapeutics has explored various potential drug treatments supported by metal- based scaffolds, following the investigation and clinical application of cisplatin, which has emerged as an active anti- cancer drug. Organometallic compounds have gained significant attention in cancer therapy due to their unique ability to interact with biomolecules, providing targeted and efficient anticancer activity. This has led to the development of metallodrugs, which encompass metal-based compounds with a wider range of functionalities and mechanisms of action compared to organic molecules. However, platinum-based metal complexes have limitations in their spectrum of anti-cancer activities, often resulting in side effects and resistance. To address these challenges, extensive research has been conducted to study and develop effective alternatives to platinum-based anticancer medications, encompassing metals such as ruthenium, vanadium, copper, iron, manganese, zinc, and cobalt. Metallodrugs represent a promising new category of potential cancer treatments, renewing interest in pursuing effective anti-cancer therapies. Nanomedicine strategies offer an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and enhance therapeutic efficacy. Multifunctional nanomaterials have demonstrated the ability to improve drug delivery by increasing bioavailability and optimizing pharmacokinetics, thereby enhancing the effectiveness of chemotherapeutic agents in overcoming multidrug resistance (MDR). By gaining a deeper understanding of their distinct characteristics and mechanisms of action, there is potential to explore avenues for developing targeted and effective anti-cancer treatments. This review explores the intricate details of various metal complexes, highlighting their unique properties and modes of action in combating cancer while providing valuable insights into their potential as promising agents for developing effective and targeted anticancer therapies, paving the way for future advancements in the field.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1035 \",\"pages\":\"Article 123682\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X25001755\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25001755","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Exploring Metal Complexes for Cancer Treatment: Mechanistic Insights and Therapeutic Potential
Recent research in the field of cancer therapeutics has explored various potential drug treatments supported by metal- based scaffolds, following the investigation and clinical application of cisplatin, which has emerged as an active anti- cancer drug. Organometallic compounds have gained significant attention in cancer therapy due to their unique ability to interact with biomolecules, providing targeted and efficient anticancer activity. This has led to the development of metallodrugs, which encompass metal-based compounds with a wider range of functionalities and mechanisms of action compared to organic molecules. However, platinum-based metal complexes have limitations in their spectrum of anti-cancer activities, often resulting in side effects and resistance. To address these challenges, extensive research has been conducted to study and develop effective alternatives to platinum-based anticancer medications, encompassing metals such as ruthenium, vanadium, copper, iron, manganese, zinc, and cobalt. Metallodrugs represent a promising new category of potential cancer treatments, renewing interest in pursuing effective anti-cancer therapies. Nanomedicine strategies offer an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and enhance therapeutic efficacy. Multifunctional nanomaterials have demonstrated the ability to improve drug delivery by increasing bioavailability and optimizing pharmacokinetics, thereby enhancing the effectiveness of chemotherapeutic agents in overcoming multidrug resistance (MDR). By gaining a deeper understanding of their distinct characteristics and mechanisms of action, there is potential to explore avenues for developing targeted and effective anti-cancer treatments. This review explores the intricate details of various metal complexes, highlighting their unique properties and modes of action in combating cancer while providing valuable insights into their potential as promising agents for developing effective and targeted anticancer therapies, paving the way for future advancements in the field.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.