Ruy Fabila-Monroy , Rosna Paul , Jenifer Viafara-Chanchi , Alexandra Weinberger
{"title":"完全平衡多部图与平衡层图的直线交叉数","authors":"Ruy Fabila-Monroy , Rosna Paul , Jenifer Viafara-Chanchi , Alexandra Weinberger","doi":"10.1016/j.comgeo.2025.102199","DOIUrl":null,"url":null,"abstract":"<div><div>A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments and its vertices are points in general position. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let <span><math><mi>n</mi><mo>≥</mo><mi>r</mi></math></span> be positive integers. The graph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, is the complete balanced <em>r</em>-partite graph on <em>n</em> vertices, in which every set of the partition has at least <span><math><mo>⌊</mo><mi>n</mi><mo>/</mo><mi>r</mi><mo>⌋</mo></math></span> vertices. The balanced layered graph, <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, is an <em>r</em>-partite graph on <em>n</em> vertices, where <em>n</em> is multiple of <em>r</em>. Every partition of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> contains <span><math><mi>n</mi><mo>/</mo><mi>r</mi></math></span> vertices; for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>−</mo><mn>1</mn></math></span>, all the vertices in the <em>i</em>-th partition are adjacent to all the vertices in the <span><math><mo>(</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-th partition, and these are the only edges of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. In this paper, we give upper bounds on the rectilinear crossing numbers of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"130 ","pages":"Article 102199"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the rectilinear crossing number of complete balanced multipartite graphs and balanced layered graphs\",\"authors\":\"Ruy Fabila-Monroy , Rosna Paul , Jenifer Viafara-Chanchi , Alexandra Weinberger\",\"doi\":\"10.1016/j.comgeo.2025.102199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments and its vertices are points in general position. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let <span><math><mi>n</mi><mo>≥</mo><mi>r</mi></math></span> be positive integers. The graph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, is the complete balanced <em>r</em>-partite graph on <em>n</em> vertices, in which every set of the partition has at least <span><math><mo>⌊</mo><mi>n</mi><mo>/</mo><mi>r</mi><mo>⌋</mo></math></span> vertices. The balanced layered graph, <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, is an <em>r</em>-partite graph on <em>n</em> vertices, where <em>n</em> is multiple of <em>r</em>. Every partition of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> contains <span><math><mi>n</mi><mo>/</mo><mi>r</mi></math></span> vertices; for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>−</mo><mn>1</mn></math></span>, all the vertices in the <em>i</em>-th partition are adjacent to all the vertices in the <span><math><mo>(</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-th partition, and these are the only edges of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. In this paper, we give upper bounds on the rectilinear crossing numbers of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"130 \",\"pages\":\"Article 102199\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772125000379\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000379","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the rectilinear crossing number of complete balanced multipartite graphs and balanced layered graphs
A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments and its vertices are points in general position. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let be positive integers. The graph , is the complete balanced r-partite graph on n vertices, in which every set of the partition has at least vertices. The balanced layered graph, , is an r-partite graph on n vertices, where n is multiple of r. Every partition of contains vertices; for every , all the vertices in the i-th partition are adjacent to all the vertices in the -th partition, and these are the only edges of . In this paper, we give upper bounds on the rectilinear crossing numbers of and .
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.