快速振荡微波场中的准通量泡动力学

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Alicia G. Castro-Montes , Elram S. Figueroa , Juan F. Marín , Mónica A. García-Ñustes
{"title":"快速振荡微波场中的准通量泡动力学","authors":"Alicia G. Castro-Montes ,&nbsp;Elram S. Figueroa ,&nbsp;Juan F. Marín ,&nbsp;Mónica A. García-Ñustes","doi":"10.1016/j.physd.2025.134704","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we numerically study the dynamics of a two-dimensional quasi-fluxon bubble in an oscillatory regime stabilized by a localized annular force under a rapidly oscillating microwave field. The bubble exhibits two distinctly dynamical regimes. At first, the oscillation of the bubble wall scales up linearly with the microwave field frequency until it reaches a cutoff, after which it detaches from the external field, returning to its natural oscillation frequency. The amplitude of the quasi-fluxon oscillations is inversely proportional to the square of the microwave field frequency. Following a simplified model based on the Kapitza approach, we proved that this dynamical behavior is characteristic of systems with a harmonic potential subjected to a rapidly oscillating field. Possible applications of microwave detection are discussed.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134704"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-fluxon bubble dynamics in a rapid oscillatory microwave field\",\"authors\":\"Alicia G. Castro-Montes ,&nbsp;Elram S. Figueroa ,&nbsp;Juan F. Marín ,&nbsp;Mónica A. García-Ñustes\",\"doi\":\"10.1016/j.physd.2025.134704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we numerically study the dynamics of a two-dimensional quasi-fluxon bubble in an oscillatory regime stabilized by a localized annular force under a rapidly oscillating microwave field. The bubble exhibits two distinctly dynamical regimes. At first, the oscillation of the bubble wall scales up linearly with the microwave field frequency until it reaches a cutoff, after which it detaches from the external field, returning to its natural oscillation frequency. The amplitude of the quasi-fluxon oscillations is inversely proportional to the square of the microwave field frequency. Following a simplified model based on the Kapitza approach, we proved that this dynamical behavior is characteristic of systems with a harmonic potential subjected to a rapidly oscillating field. Possible applications of microwave detection are discussed.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134704\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925001812\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001812","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文用数值方法研究了在快速振荡微波场作用下二维准通量泡在局域环力稳定下的动力学特性。气泡表现出两种明显的动态状态。首先,气泡壁的振荡随微波场频率线性增大,直到达到一个截止点,之后气泡壁与外场分离,回到其固有振荡频率。准通量振荡的振幅与微波场频率的平方成反比。通过基于Kapitza方法的简化模型,我们证明了这种动力学行为是受快速振荡场影响的具有谐波势的系统的特征。讨论了微波探测的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-fluxon bubble dynamics in a rapid oscillatory microwave field
In this article, we numerically study the dynamics of a two-dimensional quasi-fluxon bubble in an oscillatory regime stabilized by a localized annular force under a rapidly oscillating microwave field. The bubble exhibits two distinctly dynamical regimes. At first, the oscillation of the bubble wall scales up linearly with the microwave field frequency until it reaches a cutoff, after which it detaches from the external field, returning to its natural oscillation frequency. The amplitude of the quasi-fluxon oscillations is inversely proportional to the square of the microwave field frequency. Following a simplified model based on the Kapitza approach, we proved that this dynamical behavior is characteristic of systems with a harmonic potential subjected to a rapidly oscillating field. Possible applications of microwave detection are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信