pass - mpf:一个高效的基于物理信息的基于机器学习的求解器,用于使用Tensorflow进行多相场模拟

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Seifallah Elfetni , Reza Darvishi Kamachali
{"title":"pass - mpf:一个高效的基于物理信息的基于机器学习的求解器,用于使用Tensorflow进行多相场模拟","authors":"Seifallah Elfetni ,&nbsp;Reza Darvishi Kamachali","doi":"10.1016/j.simpa.2025.100753","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces PINNs-MPF, a novel Machine Learning-based solver designed for Multi-Phase-Field (MPF) and diffuse interface simulations, offering innovative approaches to address complex challenges in addressing microstructure evolution in polycrystalline materials using Machine Learning. The framework not only surpasses current limitations in handling multi-phase problems but also allows for potential upscaling to tackle more intricate scenarios. Developed in Python, the related code leverages optimized libraries like TensorFlow, showcasing efficiency and potential scalability in materials science and engineering simulations. This framework, integrating advanced techniques such as multi-networking and training optimization, setting a new standard in predictive capabilities and understanding complex physical phenomena.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"24 ","pages":"Article 100753"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINNs-MPF: An Efficient Physics-Informed Machine Learning-based Solver for Multi-Phase-Field Simulations using Tensorflow\",\"authors\":\"Seifallah Elfetni ,&nbsp;Reza Darvishi Kamachali\",\"doi\":\"10.1016/j.simpa.2025.100753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces PINNs-MPF, a novel Machine Learning-based solver designed for Multi-Phase-Field (MPF) and diffuse interface simulations, offering innovative approaches to address complex challenges in addressing microstructure evolution in polycrystalline materials using Machine Learning. The framework not only surpasses current limitations in handling multi-phase problems but also allows for potential upscaling to tackle more intricate scenarios. Developed in Python, the related code leverages optimized libraries like TensorFlow, showcasing efficiency and potential scalability in materials science and engineering simulations. This framework, integrating advanced techniques such as multi-networking and training optimization, setting a new standard in predictive capabilities and understanding complex physical phenomena.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"24 \",\"pages\":\"Article 100753\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963825000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了pons -MPF,一种新型的基于机器学习的求解器,专为多相场(MPF)和扩散界面模拟而设计,为利用机器学习解决多晶材料微观结构演变的复杂挑战提供了创新的方法。该框架不仅超越了当前处理多阶段问题的限制,而且还允许潜在的升级来处理更复杂的场景。用Python开发的相关代码利用了TensorFlow等优化库,展示了材料科学和工程模拟的效率和潜在的可扩展性。该框架集成了多网络和训练优化等先进技术,为预测能力和理解复杂物理现象设定了新标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PINNs-MPF: An Efficient Physics-Informed Machine Learning-based Solver for Multi-Phase-Field Simulations using Tensorflow
This paper introduces PINNs-MPF, a novel Machine Learning-based solver designed for Multi-Phase-Field (MPF) and diffuse interface simulations, offering innovative approaches to address complex challenges in addressing microstructure evolution in polycrystalline materials using Machine Learning. The framework not only surpasses current limitations in handling multi-phase problems but also allows for potential upscaling to tackle more intricate scenarios. Developed in Python, the related code leverages optimized libraries like TensorFlow, showcasing efficiency and potential scalability in materials science and engineering simulations. This framework, integrating advanced techniques such as multi-networking and training optimization, setting a new standard in predictive capabilities and understanding complex physical phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信