John Kalkhof, Niklas Ihm, Tim Köhler, Bjarne Gregori, Anirban Mukhopadhyay
{"title":"MED-NCA:仿生医学图像分割","authors":"John Kalkhof, Niklas Ihm, Tim Köhler, Bjarne Gregori, Anirban Mukhopadhyay","doi":"10.1016/j.media.2025.103601","DOIUrl":null,"url":null,"abstract":"<div><div>The reliance on computationally intensive U-Net and Transformer architectures significantly limits their accessibility in low-resource environments, creating a technological divide that hinders global healthcare equity, especially in medical diagnostics and treatment planning. This divide is most pronounced in low- and middle-income countries, primary care facilities, and conflict zones. We introduced MED-NCA, Neural Cellular Automata (NCA) based segmentation models characterized by their low parameter count, robust performance, and inherent quality control mechanisms. These features drastically lower the barriers to high-quality medical image analysis in resource-constrained settings, allowing the models to run efficiently on hardware as minimal as a Raspberry Pi or a smartphone. Building upon the foundation laid by MED-NCA, this paper extends its validation across eight distinct anatomies, including the hippocampus and prostate (MRI, 3D), liver and spleen (CT, 3D), heart and lung (X-ray, 2D), breast tumor (Ultrasound, 2D), and skin lesion (Image, 2D). Our comprehensive evaluation demonstrates the broad applicability and effectiveness of MED-NCA in various medical imaging contexts, matching the performance of two magnitudes larger UNet models. Additionally, we introduce NCA-VIS, a visualization tool that gives insight into the inference process of MED-NCA and allows users to test its robustness by applying various artifacts. This combination of efficiency, broad applicability, and enhanced interpretability makes MED-NCA a transformative solution for medical image analysis, fostering greater global healthcare equity by making advanced diagnostics accessible in even the most resource-limited environments.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103601"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MED-NCA: Bio-inspired medical image segmentation\",\"authors\":\"John Kalkhof, Niklas Ihm, Tim Köhler, Bjarne Gregori, Anirban Mukhopadhyay\",\"doi\":\"10.1016/j.media.2025.103601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The reliance on computationally intensive U-Net and Transformer architectures significantly limits their accessibility in low-resource environments, creating a technological divide that hinders global healthcare equity, especially in medical diagnostics and treatment planning. This divide is most pronounced in low- and middle-income countries, primary care facilities, and conflict zones. We introduced MED-NCA, Neural Cellular Automata (NCA) based segmentation models characterized by their low parameter count, robust performance, and inherent quality control mechanisms. These features drastically lower the barriers to high-quality medical image analysis in resource-constrained settings, allowing the models to run efficiently on hardware as minimal as a Raspberry Pi or a smartphone. Building upon the foundation laid by MED-NCA, this paper extends its validation across eight distinct anatomies, including the hippocampus and prostate (MRI, 3D), liver and spleen (CT, 3D), heart and lung (X-ray, 2D), breast tumor (Ultrasound, 2D), and skin lesion (Image, 2D). Our comprehensive evaluation demonstrates the broad applicability and effectiveness of MED-NCA in various medical imaging contexts, matching the performance of two magnitudes larger UNet models. Additionally, we introduce NCA-VIS, a visualization tool that gives insight into the inference process of MED-NCA and allows users to test its robustness by applying various artifacts. This combination of efficiency, broad applicability, and enhanced interpretability makes MED-NCA a transformative solution for medical image analysis, fostering greater global healthcare equity by making advanced diagnostics accessible in even the most resource-limited environments.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"103 \",\"pages\":\"Article 103601\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525001483\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001483","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The reliance on computationally intensive U-Net and Transformer architectures significantly limits their accessibility in low-resource environments, creating a technological divide that hinders global healthcare equity, especially in medical diagnostics and treatment planning. This divide is most pronounced in low- and middle-income countries, primary care facilities, and conflict zones. We introduced MED-NCA, Neural Cellular Automata (NCA) based segmentation models characterized by their low parameter count, robust performance, and inherent quality control mechanisms. These features drastically lower the barriers to high-quality medical image analysis in resource-constrained settings, allowing the models to run efficiently on hardware as minimal as a Raspberry Pi or a smartphone. Building upon the foundation laid by MED-NCA, this paper extends its validation across eight distinct anatomies, including the hippocampus and prostate (MRI, 3D), liver and spleen (CT, 3D), heart and lung (X-ray, 2D), breast tumor (Ultrasound, 2D), and skin lesion (Image, 2D). Our comprehensive evaluation demonstrates the broad applicability and effectiveness of MED-NCA in various medical imaging contexts, matching the performance of two magnitudes larger UNet models. Additionally, we introduce NCA-VIS, a visualization tool that gives insight into the inference process of MED-NCA and allows users to test its robustness by applying various artifacts. This combination of efficiency, broad applicability, and enhanced interpretability makes MED-NCA a transformative solution for medical image analysis, fostering greater global healthcare equity by making advanced diagnostics accessible in even the most resource-limited environments.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.