{"title":"新的部分迹不等式和Werner态的可蒸馏性","authors":"Pablo Costa Rico","doi":"10.1007/s11005-025-01935-y","DOIUrl":null,"url":null,"abstract":"<div><p>One of the oldest problems in quantum information theory is to study if there exists a state with negative partial transpose which is undistillable [1]. This problem has been open for almost 30 years, and still no one has been able to give a complete answer to it. This work presents a new strategy to try to solve this problem by translating the distillability condition on the family of Werner states into a problem of partial trace inequalities, this is the aim of our first main result. As a consequence, we obtain a new bound for the 2-distillability of Werner states, which does not depend on the dimension of the system. On the other hand, our second main result provides new partial trace inequalities for bipartite systems, connecting some of them also with the separability of Werner states. Throughout this work, we also present numerous partial trace inequalities, which are valid for many families of matrices.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01935-y.pdf","citationCount":"0","resultStr":"{\"title\":\"New partial trace inequalities and distillability of Werner states\",\"authors\":\"Pablo Costa Rico\",\"doi\":\"10.1007/s11005-025-01935-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the oldest problems in quantum information theory is to study if there exists a state with negative partial transpose which is undistillable [1]. This problem has been open for almost 30 years, and still no one has been able to give a complete answer to it. This work presents a new strategy to try to solve this problem by translating the distillability condition on the family of Werner states into a problem of partial trace inequalities, this is the aim of our first main result. As a consequence, we obtain a new bound for the 2-distillability of Werner states, which does not depend on the dimension of the system. On the other hand, our second main result provides new partial trace inequalities for bipartite systems, connecting some of them also with the separability of Werner states. Throughout this work, we also present numerous partial trace inequalities, which are valid for many families of matrices.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01935-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01935-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01935-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
New partial trace inequalities and distillability of Werner states
One of the oldest problems in quantum information theory is to study if there exists a state with negative partial transpose which is undistillable [1]. This problem has been open for almost 30 years, and still no one has been able to give a complete answer to it. This work presents a new strategy to try to solve this problem by translating the distillability condition on the family of Werner states into a problem of partial trace inequalities, this is the aim of our first main result. As a consequence, we obtain a new bound for the 2-distillability of Werner states, which does not depend on the dimension of the system. On the other hand, our second main result provides new partial trace inequalities for bipartite systems, connecting some of them also with the separability of Werner states. Throughout this work, we also present numerous partial trace inequalities, which are valid for many families of matrices.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.