多元q-Hermite-based Appell多项式:结构性质及应用

IF 0.7 Q2 MATHEMATICS
Shahid Ahmad Wani, Mumtaz Riyasat, Ramírez William, Waseem Ahmad Khan
{"title":"多元q-Hermite-based Appell多项式:结构性质及应用","authors":"Shahid Ahmad Wani,&nbsp;Mumtaz Riyasat,&nbsp;Ramírez William,&nbsp;Waseem Ahmad Khan","doi":"10.1007/s13370-025-01311-y","DOIUrl":null,"url":null,"abstract":"<div><p>In the domain of specialized mathematical functions, the rising interest in <i>q</i>-calculus continues to attract researchers, offering powerful tools for modeling in fields like quantum computing, non-commutative probability, combinatorics, functional analysis, mathematical physics, and approximation theory. This study introduces the framework of multivariate <i>q</i>-Hermite-based Appell polynomials, employing various <i>q</i>-calculus techniques. Key properties and fresh insights into these polynomials are examined, such as their generating functions, series representations, recurrence relations, <i>q</i>-differential identities, and operational mechanisms. Additionally, it is shown that these polynomials maintain a quasi-monomial structure within the <i>q</i>-calculus context.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate q-Hermite-based Appell polynomials: structural properties and applications\",\"authors\":\"Shahid Ahmad Wani,&nbsp;Mumtaz Riyasat,&nbsp;Ramírez William,&nbsp;Waseem Ahmad Khan\",\"doi\":\"10.1007/s13370-025-01311-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the domain of specialized mathematical functions, the rising interest in <i>q</i>-calculus continues to attract researchers, offering powerful tools for modeling in fields like quantum computing, non-commutative probability, combinatorics, functional analysis, mathematical physics, and approximation theory. This study introduces the framework of multivariate <i>q</i>-Hermite-based Appell polynomials, employing various <i>q</i>-calculus techniques. Key properties and fresh insights into these polynomials are examined, such as their generating functions, series representations, recurrence relations, <i>q</i>-differential identities, and operational mechanisms. Additionally, it is shown that these polynomials maintain a quasi-monomial structure within the <i>q</i>-calculus context.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01311-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01311-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在专门的数学函数领域,对q-微积分的兴趣不断增加,继续吸引研究人员,为量子计算、非交换概率、组合学、泛函分析、数学物理和近似理论等领域的建模提供了强大的工具。本研究介绍了多元q-Hermite-based Appell多项式的框架,采用了各种q-微积分技术。考察了这些多项式的关键性质和新见解,例如它们的生成函数、级数表示、递归关系、q-微分恒等式和操作机制。此外,还证明了这些多项式在q-微积分上下文中保持一个拟单项式结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate q-Hermite-based Appell polynomials: structural properties and applications

In the domain of specialized mathematical functions, the rising interest in q-calculus continues to attract researchers, offering powerful tools for modeling in fields like quantum computing, non-commutative probability, combinatorics, functional analysis, mathematical physics, and approximation theory. This study introduces the framework of multivariate q-Hermite-based Appell polynomials, employing various q-calculus techniques. Key properties and fresh insights into these polynomials are examined, such as their generating functions, series representations, recurrence relations, q-differential identities, and operational mechanisms. Additionally, it is shown that these polynomials maintain a quasi-monomial structure within the q-calculus context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信