Giuliano G. Porciúncula , Marcone I. Sena-Junior , Luiz Felipe C. Pereira , André L.M. Vilela
{"title":"社交媒体合成影响群体对无标度网络的共识效应","authors":"Giuliano G. Porciúncula , Marcone I. Sena-Junior , Luiz Felipe C. Pereira , André L.M. Vilela","doi":"10.1016/j.chaos.2025.116479","DOIUrl":null,"url":null,"abstract":"<div><div>Online platforms for social interactions are an essential part of modern society. With the advance of technology and the rise of algorithms and AI, content is now filtered systematically, facilitating the formation of filter bubbles. This work investigates the social consensus under limited visibility in a two-state majority-vote model on Barabási–Albert scale-free networks. In the consensus evolution, each individual assimilates the opinion of the majority of their neighbors with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>q</mi></mrow></math></span> and disagrees with chance <span><math><mi>q</mi></math></span>, known as the noise parameter. We define the visibility parameter <span><math><mi>V</mi></math></span> as the probability of an individual considering the opinion of a neighbor at a given interaction. The parameter <span><math><mi>V</mi></math></span> enables us to model the limited visibility phenomenon that produces synthetic neighborhoods in online interactions. We employ Monte Carlo simulations and finite-size scaling analysis to obtain the critical noise parameter as a function of the visibility <span><math><mi>V</mi></math></span> and the growth parameter <span><math><mi>z</mi></math></span>. We find the critical exponents <span><math><mrow><mi>β</mi><mo>/</mo><mover><mrow><mi>ν</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>, <span><math><mrow><mi>γ</mi><mo>/</mo><mover><mrow><mi>ν</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mover><mrow><mi>ν</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span> of the system and validate the unitary relation for complex networks. Our analysis shows that installing and manipulating synthetic influence groups critically undermines consensus robustness.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"197 ","pages":"Article 116479"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus effects of social media synthetic influence groups on scale-free networks\",\"authors\":\"Giuliano G. Porciúncula , Marcone I. Sena-Junior , Luiz Felipe C. Pereira , André L.M. Vilela\",\"doi\":\"10.1016/j.chaos.2025.116479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Online platforms for social interactions are an essential part of modern society. With the advance of technology and the rise of algorithms and AI, content is now filtered systematically, facilitating the formation of filter bubbles. This work investigates the social consensus under limited visibility in a two-state majority-vote model on Barabási–Albert scale-free networks. In the consensus evolution, each individual assimilates the opinion of the majority of their neighbors with probability <span><math><mrow><mn>1</mn><mo>−</mo><mi>q</mi></mrow></math></span> and disagrees with chance <span><math><mi>q</mi></math></span>, known as the noise parameter. We define the visibility parameter <span><math><mi>V</mi></math></span> as the probability of an individual considering the opinion of a neighbor at a given interaction. The parameter <span><math><mi>V</mi></math></span> enables us to model the limited visibility phenomenon that produces synthetic neighborhoods in online interactions. We employ Monte Carlo simulations and finite-size scaling analysis to obtain the critical noise parameter as a function of the visibility <span><math><mi>V</mi></math></span> and the growth parameter <span><math><mi>z</mi></math></span>. We find the critical exponents <span><math><mrow><mi>β</mi><mo>/</mo><mover><mrow><mi>ν</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>, <span><math><mrow><mi>γ</mi><mo>/</mo><mover><mrow><mi>ν</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mover><mrow><mi>ν</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span> of the system and validate the unitary relation for complex networks. Our analysis shows that installing and manipulating synthetic influence groups critically undermines consensus robustness.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"197 \",\"pages\":\"Article 116479\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004928\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004928","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Consensus effects of social media synthetic influence groups on scale-free networks
Online platforms for social interactions are an essential part of modern society. With the advance of technology and the rise of algorithms and AI, content is now filtered systematically, facilitating the formation of filter bubbles. This work investigates the social consensus under limited visibility in a two-state majority-vote model on Barabási–Albert scale-free networks. In the consensus evolution, each individual assimilates the opinion of the majority of their neighbors with probability and disagrees with chance , known as the noise parameter. We define the visibility parameter as the probability of an individual considering the opinion of a neighbor at a given interaction. The parameter enables us to model the limited visibility phenomenon that produces synthetic neighborhoods in online interactions. We employ Monte Carlo simulations and finite-size scaling analysis to obtain the critical noise parameter as a function of the visibility and the growth parameter . We find the critical exponents , and of the system and validate the unitary relation for complex networks. Our analysis shows that installing and manipulating synthetic influence groups critically undermines consensus robustness.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.