{"title":"基于古生菌多面体多形性的研究呼吁","authors":"Richard Gordon","doi":"10.1016/j.biosystems.2025.105478","DOIUrl":null,"url":null,"abstract":"<div><div>Morphogenesis is a major unsolved problem. It is usually tackled in the embryogenesis of multicellular organisms, but rarely leans on studies of single-cell organisms. But the latter often have fascinating, puzzling shapes, whose understanding may be key to multicellular embryogenesis, wound healing, and regeneration. Here, I call for new directions in studying what may have been the first shaped, single-celled organisms, the Domain of Archaea, which might have been LUCA (Last Universal Common Ancestor), the first organisms at the origin of life. While their shaping is usually attributed to the “crystallinity” of the S-layer, this may have the liquidity of a bubble raft.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"252 ","pages":"Article 105478"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A call for research on the basis for polygonal pleomorphism in archaea\",\"authors\":\"Richard Gordon\",\"doi\":\"10.1016/j.biosystems.2025.105478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Morphogenesis is a major unsolved problem. It is usually tackled in the embryogenesis of multicellular organisms, but rarely leans on studies of single-cell organisms. But the latter often have fascinating, puzzling shapes, whose understanding may be key to multicellular embryogenesis, wound healing, and regeneration. Here, I call for new directions in studying what may have been the first shaped, single-celled organisms, the Domain of Archaea, which might have been LUCA (Last Universal Common Ancestor), the first organisms at the origin of life. While their shaping is usually attributed to the “crystallinity” of the S-layer, this may have the liquidity of a bubble raft.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"252 \",\"pages\":\"Article 105478\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264725000887\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725000887","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
A call for research on the basis for polygonal pleomorphism in archaea
Morphogenesis is a major unsolved problem. It is usually tackled in the embryogenesis of multicellular organisms, but rarely leans on studies of single-cell organisms. But the latter often have fascinating, puzzling shapes, whose understanding may be key to multicellular embryogenesis, wound healing, and regeneration. Here, I call for new directions in studying what may have been the first shaped, single-celled organisms, the Domain of Archaea, which might have been LUCA (Last Universal Common Ancestor), the first organisms at the origin of life. While their shaping is usually attributed to the “crystallinity” of the S-layer, this may have the liquidity of a bubble raft.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.