二维半导体带隙预测的自监督集成学习模型

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haotian Liu, Mingjun Weng, Yunning Huang, Yijia Luo, Yongping Zheng
{"title":"二维半导体带隙预测的自监督集成学习模型","authors":"Haotian Liu,&nbsp;Mingjun Weng,&nbsp;Yunning Huang,&nbsp;Yijia Luo,&nbsp;Yongping Zheng","doi":"10.1016/j.commatsci.2025.113853","DOIUrl":null,"url":null,"abstract":"<div><div>Effective representation and processing of crystal structures are crucial for the successful application of machine learning techniques in predicting material properties. In this research, we have developed a Self-Supervised Ensemble model (SSE) to predict the Heyd–Scuseria–Ernzerhof (HSE06) bandgap of two-dimensional semiconductors. Specifically, our model is capable of autonomously extract crystalline structural information of materials using an autoencoder, which is then used to refine the preliminary bandgap calculations obtained through the low-cost Perdew–Burke–Ernzerhof (PBE) method. By correcting the PBE bandgap through ensemble learning, we have successfully approximated the HSE06 bandgap with a root mean squared error (RMSE) of 0.372 eV and a mean absolute error (MAE) of 0.262 eV. Furthermore, we validated the model’s performance on three-dimensional materials with diverse and complex structures, demonstrating robust generalization capabilities. Our research lays a foundational framework for the screening and synthesis of two-dimensional semiconductors with significant potential applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"255 ","pages":"Article 113853"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self supervised ensemble learning models for 2D semiconductors bandgap prediction\",\"authors\":\"Haotian Liu,&nbsp;Mingjun Weng,&nbsp;Yunning Huang,&nbsp;Yijia Luo,&nbsp;Yongping Zheng\",\"doi\":\"10.1016/j.commatsci.2025.113853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective representation and processing of crystal structures are crucial for the successful application of machine learning techniques in predicting material properties. In this research, we have developed a Self-Supervised Ensemble model (SSE) to predict the Heyd–Scuseria–Ernzerhof (HSE06) bandgap of two-dimensional semiconductors. Specifically, our model is capable of autonomously extract crystalline structural information of materials using an autoencoder, which is then used to refine the preliminary bandgap calculations obtained through the low-cost Perdew–Burke–Ernzerhof (PBE) method. By correcting the PBE bandgap through ensemble learning, we have successfully approximated the HSE06 bandgap with a root mean squared error (RMSE) of 0.372 eV and a mean absolute error (MAE) of 0.262 eV. Furthermore, we validated the model’s performance on three-dimensional materials with diverse and complex structures, demonstrating robust generalization capabilities. Our research lays a foundational framework for the screening and synthesis of two-dimensional semiconductors with significant potential applications.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"255 \",\"pages\":\"Article 113853\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702562500196X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562500196X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶体结构的有效表征和处理对于机器学习技术在预测材料性能方面的成功应用至关重要。在这项研究中,我们开发了一个自监督集成模型(SSE)来预测二维半导体的Heyd-Scuseria-Ernzerhof (HSE06)带隙。具体来说,我们的模型能够使用自动编码器自主提取材料的晶体结构信息,然后使用该信息来改进通过低成本perdu - burke - ernzerhof (PBE)方法获得的初步带隙计算。通过集成学习对PBE带隙进行校正,我们成功地逼近了HSE06带隙,均方根误差(RMSE)为0.372 eV,平均绝对误差(MAE)为0.262 eV。此外,我们验证了该模型在具有多种复杂结构的三维材料上的性能,展示了强大的泛化能力。我们的研究为筛选和合成具有重要潜在应用价值的二维半导体奠定了基础框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self supervised ensemble learning models for 2D semiconductors bandgap prediction

Self supervised ensemble learning models for 2D semiconductors bandgap prediction
Effective representation and processing of crystal structures are crucial for the successful application of machine learning techniques in predicting material properties. In this research, we have developed a Self-Supervised Ensemble model (SSE) to predict the Heyd–Scuseria–Ernzerhof (HSE06) bandgap of two-dimensional semiconductors. Specifically, our model is capable of autonomously extract crystalline structural information of materials using an autoencoder, which is then used to refine the preliminary bandgap calculations obtained through the low-cost Perdew–Burke–Ernzerhof (PBE) method. By correcting the PBE bandgap through ensemble learning, we have successfully approximated the HSE06 bandgap with a root mean squared error (RMSE) of 0.372 eV and a mean absolute error (MAE) of 0.262 eV. Furthermore, we validated the model’s performance on three-dimensional materials with diverse and complex structures, demonstrating robust generalization capabilities. Our research lays a foundational framework for the screening and synthesis of two-dimensional semiconductors with significant potential applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信