{"title":"黑色素瘤细胞与CAFs之间的动态相互作用:耐药性和免疫逃避的意义以及可能的治疗方法","authors":"Chou-Yi Hsu , Raed Obaid Saleh , Jaafaru Sani Mohammed , Nasrin Mansuri , M.M. Rekha , Mayank Kundlas , Alex Anand , Samir Sahoo , Ahmed Hussein Zwamel , Hanen Mahmod Hulail","doi":"10.1016/j.yexcr.2025.114581","DOIUrl":null,"url":null,"abstract":"<div><div>Melanoma, a malignancy of varying prognoses across primary sites (cutaneous, ocular, and mucosal), typically displays peculiar treatment challenges in metastatic and refractory settings. Cancer-associated fibroblasts (CAFs) have long been recognized as pivotal components within melanoma's tumor microenvironment (TME), originating from various sources and manifesting considerable heterogeneity. These cells actively produce extracellular matrix (ECM), induce angiogenesis, provide metabolic support, contribute to drug resistance, and feed tumor progression and metastasis. Among the many growth factors and cytokines they secrete, including TGF-β and IL-6, they aid in anti-tumor immunity by recruiting immunosuppressive cells and inhibiting cytotoxic T-cell activity, contributing to immune evasion. These dynamic cells sculpt the tumor's niche, allowing cancer cells to survive and proliferate, and their existence is widely correlated with poor prognosis. Taking a cue from the previously established groundwork of how the surroundings heavily influence tumor development, this review attempts to profile the intricate interaction of melanoma cells with the CAFs, the ECM, and signaling molecules. We explore different subtypes of CAFs, their origins, and how they have evolved in their pro-tumorigenic roles in melanoma. Additionally, we review recent advancements in the therapeutic arsenal targeting CAFs to achieve a more effective treatment response. By detailing the specific roles played by different CAFs subtypes in the modulation of immuno-responses and treatment outcomes, this review will further provide insights into the targeted therapy to disrupt CAFs-mediated tumor support in melanoma.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"449 1","pages":"Article 114581"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dynamic interplay between melanoma cells and CAFs: Implications drug resistance and immune evasion and possible therapeutics\",\"authors\":\"Chou-Yi Hsu , Raed Obaid Saleh , Jaafaru Sani Mohammed , Nasrin Mansuri , M.M. Rekha , Mayank Kundlas , Alex Anand , Samir Sahoo , Ahmed Hussein Zwamel , Hanen Mahmod Hulail\",\"doi\":\"10.1016/j.yexcr.2025.114581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Melanoma, a malignancy of varying prognoses across primary sites (cutaneous, ocular, and mucosal), typically displays peculiar treatment challenges in metastatic and refractory settings. Cancer-associated fibroblasts (CAFs) have long been recognized as pivotal components within melanoma's tumor microenvironment (TME), originating from various sources and manifesting considerable heterogeneity. These cells actively produce extracellular matrix (ECM), induce angiogenesis, provide metabolic support, contribute to drug resistance, and feed tumor progression and metastasis. Among the many growth factors and cytokines they secrete, including TGF-β and IL-6, they aid in anti-tumor immunity by recruiting immunosuppressive cells and inhibiting cytotoxic T-cell activity, contributing to immune evasion. These dynamic cells sculpt the tumor's niche, allowing cancer cells to survive and proliferate, and their existence is widely correlated with poor prognosis. Taking a cue from the previously established groundwork of how the surroundings heavily influence tumor development, this review attempts to profile the intricate interaction of melanoma cells with the CAFs, the ECM, and signaling molecules. We explore different subtypes of CAFs, their origins, and how they have evolved in their pro-tumorigenic roles in melanoma. Additionally, we review recent advancements in the therapeutic arsenal targeting CAFs to achieve a more effective treatment response. By detailing the specific roles played by different CAFs subtypes in the modulation of immuno-responses and treatment outcomes, this review will further provide insights into the targeted therapy to disrupt CAFs-mediated tumor support in melanoma.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"449 1\",\"pages\":\"Article 114581\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725001776\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725001776","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The dynamic interplay between melanoma cells and CAFs: Implications drug resistance and immune evasion and possible therapeutics
Melanoma, a malignancy of varying prognoses across primary sites (cutaneous, ocular, and mucosal), typically displays peculiar treatment challenges in metastatic and refractory settings. Cancer-associated fibroblasts (CAFs) have long been recognized as pivotal components within melanoma's tumor microenvironment (TME), originating from various sources and manifesting considerable heterogeneity. These cells actively produce extracellular matrix (ECM), induce angiogenesis, provide metabolic support, contribute to drug resistance, and feed tumor progression and metastasis. Among the many growth factors and cytokines they secrete, including TGF-β and IL-6, they aid in anti-tumor immunity by recruiting immunosuppressive cells and inhibiting cytotoxic T-cell activity, contributing to immune evasion. These dynamic cells sculpt the tumor's niche, allowing cancer cells to survive and proliferate, and their existence is widely correlated with poor prognosis. Taking a cue from the previously established groundwork of how the surroundings heavily influence tumor development, this review attempts to profile the intricate interaction of melanoma cells with the CAFs, the ECM, and signaling molecules. We explore different subtypes of CAFs, their origins, and how they have evolved in their pro-tumorigenic roles in melanoma. Additionally, we review recent advancements in the therapeutic arsenal targeting CAFs to achieve a more effective treatment response. By detailing the specific roles played by different CAFs subtypes in the modulation of immuno-responses and treatment outcomes, this review will further provide insights into the targeted therapy to disrupt CAFs-mediated tumor support in melanoma.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.