Sheng Di, Jinyang Liu, Kai Zhao, Xin Liang, Robert Underwood, Zhaorui Zhang, Milan Shah, Yafan Huang, Jiajun Huang, Xiaodong Yu, Congrong Ren, Hanqi Guo, Grant Wilkins, Dingwen Tao, Jiannan Tian, Sian Jin, Zizhe Jian, Daoce Wang, Md Hasanur Rahman, Boyuan Zhang, Shihui Song, Jon Calhoun, Guanpeng Li, Kazutomo Yoshii, Khalid Alharthi, Franck Cappello
{"title":"科学数据集误差有界有损压缩研究进展","authors":"Sheng Di, Jinyang Liu, Kai Zhao, Xin Liang, Robert Underwood, Zhaorui Zhang, Milan Shah, Yafan Huang, Jiajun Huang, Xiaodong Yu, Congrong Ren, Hanqi Guo, Grant Wilkins, Dingwen Tao, Jiannan Tian, Sian Jin, Zizhe Jian, Daoce Wang, Md Hasanur Rahman, Boyuan Zhang, Shihui Song, Jon Calhoun, Guanpeng Li, Kazutomo Yoshii, Khalid Alharthi, Franck Cappello","doi":"10.1145/3733104","DOIUrl":null,"url":null,"abstract":"Error-bounded lossy compression has been effective in significantly reducing the data storage/transfer burden while preserving the reconstructed data fidelity very well. Many error-bounded lossy compressors have been developed for a wide range of parallel and distributed use cases for years. They are designed with distinct compression models and principles, such that each of them features particular pros and cons. In this paper we provide a comprehensive survey of emerging error-bounded lossy compression techniques. The key contribution is fourfold. (1) We summarize a novel taxonomy of lossy compression into 6 classic models. (2) We provide a comprehensive survey of 10 commonly used compression components/modules. (3) We summarized pros and cons of 47 state-of-the-art lossy compressors and present how state-of-the-art compressors are designed based on different compression techniques. (4) We discuss how customized compressors are designed for specific scientific applications and use-cases. We believe this survey is useful to multiple communities including scientific applications, high-performance computing, lossy compression, and big data.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"15 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Error-Bounded Lossy Compression for Scientific Datasets\",\"authors\":\"Sheng Di, Jinyang Liu, Kai Zhao, Xin Liang, Robert Underwood, Zhaorui Zhang, Milan Shah, Yafan Huang, Jiajun Huang, Xiaodong Yu, Congrong Ren, Hanqi Guo, Grant Wilkins, Dingwen Tao, Jiannan Tian, Sian Jin, Zizhe Jian, Daoce Wang, Md Hasanur Rahman, Boyuan Zhang, Shihui Song, Jon Calhoun, Guanpeng Li, Kazutomo Yoshii, Khalid Alharthi, Franck Cappello\",\"doi\":\"10.1145/3733104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Error-bounded lossy compression has been effective in significantly reducing the data storage/transfer burden while preserving the reconstructed data fidelity very well. Many error-bounded lossy compressors have been developed for a wide range of parallel and distributed use cases for years. They are designed with distinct compression models and principles, such that each of them features particular pros and cons. In this paper we provide a comprehensive survey of emerging error-bounded lossy compression techniques. The key contribution is fourfold. (1) We summarize a novel taxonomy of lossy compression into 6 classic models. (2) We provide a comprehensive survey of 10 commonly used compression components/modules. (3) We summarized pros and cons of 47 state-of-the-art lossy compressors and present how state-of-the-art compressors are designed based on different compression techniques. (4) We discuss how customized compressors are designed for specific scientific applications and use-cases. We believe this survey is useful to multiple communities including scientific applications, high-performance computing, lossy compression, and big data.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3733104\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3733104","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Survey on Error-Bounded Lossy Compression for Scientific Datasets
Error-bounded lossy compression has been effective in significantly reducing the data storage/transfer burden while preserving the reconstructed data fidelity very well. Many error-bounded lossy compressors have been developed for a wide range of parallel and distributed use cases for years. They are designed with distinct compression models and principles, such that each of them features particular pros and cons. In this paper we provide a comprehensive survey of emerging error-bounded lossy compression techniques. The key contribution is fourfold. (1) We summarize a novel taxonomy of lossy compression into 6 classic models. (2) We provide a comprehensive survey of 10 commonly used compression components/modules. (3) We summarized pros and cons of 47 state-of-the-art lossy compressors and present how state-of-the-art compressors are designed based on different compression techniques. (4) We discuss how customized compressors are designed for specific scientific applications and use-cases. We believe this survey is useful to multiple communities including scientific applications, high-performance computing, lossy compression, and big data.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.