Daniel Bandur , Abigail Lee , Stefan Tsankov , Andreas Erb , Jürgen Haase
{"title":"来自氧核磁共振的铜酸盐的条纹状相关性","authors":"Daniel Bandur , Abigail Lee , Stefan Tsankov , Andreas Erb , Jürgen Haase","doi":"10.1016/j.physc.2025.1354722","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear magnetic resonance (NMR) of planar oxygen, with its family independent phenomenology, is ideally suited to probe the nature of the quantum matter of superconducting cuprates. Here, with new experiments on La<span><math><msub><mrow></mrow><mrow><mn>2</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Sr<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>CuO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, in particular also at high doping levels, we report on short-range stripe-like correlations between local charge and spin. The amplitudes of the spin and charge variations at room temperature are nearly independent of doping up to at least <span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>30</mn></mrow></math></span>. However, the correlation is inverted upon passing <span><math><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></math></span>. Despite the atomic scale length, the variations still resemble the average spin and charge relation. Literature data show the correlations to be generic to the cuprates.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"633 ","pages":"Article 1354722"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stripe-like correlations in the cuprates from oxygen NMR\",\"authors\":\"Daniel Bandur , Abigail Lee , Stefan Tsankov , Andreas Erb , Jürgen Haase\",\"doi\":\"10.1016/j.physc.2025.1354722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nuclear magnetic resonance (NMR) of planar oxygen, with its family independent phenomenology, is ideally suited to probe the nature of the quantum matter of superconducting cuprates. Here, with new experiments on La<span><math><msub><mrow></mrow><mrow><mn>2</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Sr<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>CuO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, in particular also at high doping levels, we report on short-range stripe-like correlations between local charge and spin. The amplitudes of the spin and charge variations at room temperature are nearly independent of doping up to at least <span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>30</mn></mrow></math></span>. However, the correlation is inverted upon passing <span><math><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></math></span>. Despite the atomic scale length, the variations still resemble the average spin and charge relation. Literature data show the correlations to be generic to the cuprates.</div></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":\"633 \",\"pages\":\"Article 1354722\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453425000759\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453425000759","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Stripe-like correlations in the cuprates from oxygen NMR
Nuclear magnetic resonance (NMR) of planar oxygen, with its family independent phenomenology, is ideally suited to probe the nature of the quantum matter of superconducting cuprates. Here, with new experiments on LaSrCuO, in particular also at high doping levels, we report on short-range stripe-like correlations between local charge and spin. The amplitudes of the spin and charge variations at room temperature are nearly independent of doping up to at least . However, the correlation is inverted upon passing . Despite the atomic scale length, the variations still resemble the average spin and charge relation. Literature data show the correlations to be generic to the cuprates.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.