全原子病毒模拟来对付空气传播疾病

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Abigail C. Dommer , Nicholas A. Wauer , Siewert J. Marrink , Rommie E. Amaro
{"title":"全原子病毒模拟来对付空气传播疾病","authors":"Abigail C. Dommer ,&nbsp;Nicholas A. Wauer ,&nbsp;Siewert J. Marrink ,&nbsp;Rommie E. Amaro","doi":"10.1016/j.sbi.2025.103048","DOIUrl":null,"url":null,"abstract":"<div><div>We briefly review the latest computational studies focused on modeling viruses with classical all-atom (AA) molecular dynamics. We report on the challenges, current solutions, and ongoing developments in constructing and simulating whole viruses, and discuss unique insights derived from AA mesoscale simulations that cannot be achieved by other means. Finally, we present new opportunities in computational virology to understand viral aerostability within the context of respiratory disease transmission. Overall, we highlight the value of large-scale AA simulation and champion the need for increased interdisciplinary collaboration to generate novel insights and guide future research in respiratory disease.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103048"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-atom virus simulations to tackle airborne disease\",\"authors\":\"Abigail C. Dommer ,&nbsp;Nicholas A. Wauer ,&nbsp;Siewert J. Marrink ,&nbsp;Rommie E. Amaro\",\"doi\":\"10.1016/j.sbi.2025.103048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We briefly review the latest computational studies focused on modeling viruses with classical all-atom (AA) molecular dynamics. We report on the challenges, current solutions, and ongoing developments in constructing and simulating whole viruses, and discuss unique insights derived from AA mesoscale simulations that cannot be achieved by other means. Finally, we present new opportunities in computational virology to understand viral aerostability within the context of respiratory disease transmission. Overall, we highlight the value of large-scale AA simulation and champion the need for increased interdisciplinary collaboration to generate novel insights and guide future research in respiratory disease.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"92 \",\"pages\":\"Article 103048\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25000661\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000661","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文简要回顾了用经典全原子(AA)分子动力学建模病毒的最新计算研究。我们报告了构建和模拟整个病毒的挑战、当前解决方案和正在进行的发展,并讨论了从AA中尺度模拟中获得的独特见解,这些见解无法通过其他方式实现。最后,我们提出了计算病毒学的新机会,以了解呼吸道疾病传播背景下的病毒空气稳定性。总的来说,我们强调了大规模AA模拟的价值,并支持增加跨学科合作的必要性,以产生新的见解并指导未来呼吸道疾病的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All-atom virus simulations to tackle airborne disease
We briefly review the latest computational studies focused on modeling viruses with classical all-atom (AA) molecular dynamics. We report on the challenges, current solutions, and ongoing developments in constructing and simulating whole viruses, and discuss unique insights derived from AA mesoscale simulations that cannot be achieved by other means. Finally, we present new opportunities in computational virology to understand viral aerostability within the context of respiratory disease transmission. Overall, we highlight the value of large-scale AA simulation and champion the need for increased interdisciplinary collaboration to generate novel insights and guide future research in respiratory disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信