Chenxu Zhou , Binbin Gong , Xiyu Liu , Guoqiang Hu , Lidan Sun
{"title":"葡萄糖依赖性胰岛素肽及其他:代谢性疾病治疗的协同激动剂创新","authors":"Chenxu Zhou , Binbin Gong , Xiyu Liu , Guoqiang Hu , Lidan Sun","doi":"10.1016/j.ejphar.2025.177681","DOIUrl":null,"url":null,"abstract":"<div><div>Glucose-dependent insulinotropic peptide (GIP), a key incretin hormone, has emerged as a pivotal therapeutic target in metabolic disorders. Historically, its therapeutic potential in type 2 diabetes mellitus (T2DM) has been underestimated owing to GIP resistance and its limited acute effects on glycemic control and body weight regulation. However, emerging evidence has demonstrated that GIP resistance is reversible through sustained glycemic improvement, thereby restoring its physiological effectiveness. With the development of gut hormone co-agonists, the potential of GIP in the treatment of metabolic diseases has been reevaluated. The study of GIP and its co-agonists such as glucagon-like peptide-1 (GLP-1), revealed that its mechanism of action in regulating blood glucose, fat metabolism, and bone metabolism is complex and diverse. A better understanding of GIP evolution can help in designing more effective GIP-based treatment strategies. In this review, we summarize the physiological functions of GIP, systematically explores its diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects of GIP analogs.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"999 ","pages":"Article 177681"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glucose-dependent insulinotropic peptide and beyond: co-agonist innovations in the treatment of metabolic diseases\",\"authors\":\"Chenxu Zhou , Binbin Gong , Xiyu Liu , Guoqiang Hu , Lidan Sun\",\"doi\":\"10.1016/j.ejphar.2025.177681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glucose-dependent insulinotropic peptide (GIP), a key incretin hormone, has emerged as a pivotal therapeutic target in metabolic disorders. Historically, its therapeutic potential in type 2 diabetes mellitus (T2DM) has been underestimated owing to GIP resistance and its limited acute effects on glycemic control and body weight regulation. However, emerging evidence has demonstrated that GIP resistance is reversible through sustained glycemic improvement, thereby restoring its physiological effectiveness. With the development of gut hormone co-agonists, the potential of GIP in the treatment of metabolic diseases has been reevaluated. The study of GIP and its co-agonists such as glucagon-like peptide-1 (GLP-1), revealed that its mechanism of action in regulating blood glucose, fat metabolism, and bone metabolism is complex and diverse. A better understanding of GIP evolution can help in designing more effective GIP-based treatment strategies. In this review, we summarize the physiological functions of GIP, systematically explores its diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects of GIP analogs.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"999 \",\"pages\":\"Article 177681\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299925004352\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925004352","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Glucose-dependent insulinotropic peptide and beyond: co-agonist innovations in the treatment of metabolic diseases
Glucose-dependent insulinotropic peptide (GIP), a key incretin hormone, has emerged as a pivotal therapeutic target in metabolic disorders. Historically, its therapeutic potential in type 2 diabetes mellitus (T2DM) has been underestimated owing to GIP resistance and its limited acute effects on glycemic control and body weight regulation. However, emerging evidence has demonstrated that GIP resistance is reversible through sustained glycemic improvement, thereby restoring its physiological effectiveness. With the development of gut hormone co-agonists, the potential of GIP in the treatment of metabolic diseases has been reevaluated. The study of GIP and its co-agonists such as glucagon-like peptide-1 (GLP-1), revealed that its mechanism of action in regulating blood glucose, fat metabolism, and bone metabolism is complex and diverse. A better understanding of GIP evolution can help in designing more effective GIP-based treatment strategies. In this review, we summarize the physiological functions of GIP, systematically explores its diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects of GIP analogs.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.