掺锑CsSnCl3卤化物钙钛矿的计算研究:对结构、电子、光学和光伏性能分析的见解

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Mekuria Tsegaye Alemu , Derje Fufa Hirpa , Kingsley Onyebuchi Obodo , Chernet Amente Gefe
{"title":"掺锑CsSnCl3卤化物钙钛矿的计算研究:对结构、电子、光学和光伏性能分析的见解","authors":"Mekuria Tsegaye Alemu ,&nbsp;Derje Fufa Hirpa ,&nbsp;Kingsley Onyebuchi Obodo ,&nbsp;Chernet Amente Gefe","doi":"10.1016/j.cocom.2025.e01045","DOIUrl":null,"url":null,"abstract":"<div><div>Antimony (Sb)-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> halide perovskites have emerged as promising candidates for lead-free perovskite solar cells due to their enhanced stability and tunable optoelectronic properties. This study employs first-principles Density Functional Theory (DFT) calculations to investigate the structural, electronic, optical properties of pristine and Sb-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and SCAPS-1D simulations to investigate the photovoltaic characteristics of CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Structural optimizations reveal stable lattice configurations, with doping slightly expanding the lattice parameters. Sb doping significantly widens the bandgap from 0.95 eV (pristine) to 1.93 eV (3.7% doping) transitioning the material to an n-type semiconductor. Optical analyses show enhanced absorption and refractive properties in the visible spectrum, vital for efficient light harvesting. SCAPS-1D simulations indicate a PCE of 22.79% for CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> based solar cell, with optimal absorber thickness at 1300 nm. The results demonstrate that Sb doping addresses the stability issues of tin-based perovskites while enhancing their photovoltaic performance, paving the way for sustainable, lead-free solar technologies.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"43 ","pages":"Article e01045"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational investigation of antimony-doped CsSnCl3 halide perovskites: Insights into structural, electronic, optical, and photovoltaic performance analysis\",\"authors\":\"Mekuria Tsegaye Alemu ,&nbsp;Derje Fufa Hirpa ,&nbsp;Kingsley Onyebuchi Obodo ,&nbsp;Chernet Amente Gefe\",\"doi\":\"10.1016/j.cocom.2025.e01045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimony (Sb)-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> halide perovskites have emerged as promising candidates for lead-free perovskite solar cells due to their enhanced stability and tunable optoelectronic properties. This study employs first-principles Density Functional Theory (DFT) calculations to investigate the structural, electronic, optical properties of pristine and Sb-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and SCAPS-1D simulations to investigate the photovoltaic characteristics of CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Structural optimizations reveal stable lattice configurations, with doping slightly expanding the lattice parameters. Sb doping significantly widens the bandgap from 0.95 eV (pristine) to 1.93 eV (3.7% doping) transitioning the material to an n-type semiconductor. Optical analyses show enhanced absorption and refractive properties in the visible spectrum, vital for efficient light harvesting. SCAPS-1D simulations indicate a PCE of 22.79% for CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> based solar cell, with optimal absorber thickness at 1300 nm. The results demonstrate that Sb doping addresses the stability issues of tin-based perovskites while enhancing their photovoltaic performance, paving the way for sustainable, lead-free solar technologies.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"43 \",\"pages\":\"Article e01045\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325000449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

锑(Sb)掺杂CsSnCl3卤化物钙钛矿由于其增强的稳定性和可调谐的光电性能而成为无铅钙钛矿太阳能电池的有希望的候选者。本研究采用第一性原理密度泛函理论(DFT)计算研究了原始CsSnCl3和掺杂sb的CsSnCl3的结构、电子和光学性质,并采用SCAPS-1D模拟研究了CsSnCl3的光伏特性。结构优化显示出稳定的晶格构型,掺杂使晶格参数略微扩大。Sb的掺杂使带隙从0.95 eV(未掺杂)显著扩大到1.93 eV(掺杂3.7%),使材料转变为n型半导体。光学分析表明,在可见光谱中增强的吸收和折射特性对有效的光收集至关重要。SCAPS-1D模拟表明,CsSnCl3基太阳能电池的PCE为22.79%,吸收层厚度为1300 nm。结果表明,Sb掺杂解决了锡基钙钛矿的稳定性问题,同时提高了其光伏性能,为可持续的无铅太阳能技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational investigation of antimony-doped CsSnCl3 halide perovskites: Insights into structural, electronic, optical, and photovoltaic performance analysis
Antimony (Sb)-doped CsSnCl3 halide perovskites have emerged as promising candidates for lead-free perovskite solar cells due to their enhanced stability and tunable optoelectronic properties. This study employs first-principles Density Functional Theory (DFT) calculations to investigate the structural, electronic, optical properties of pristine and Sb-doped CsSnCl3, and SCAPS-1D simulations to investigate the photovoltaic characteristics of CsSnCl3. Structural optimizations reveal stable lattice configurations, with doping slightly expanding the lattice parameters. Sb doping significantly widens the bandgap from 0.95 eV (pristine) to 1.93 eV (3.7% doping) transitioning the material to an n-type semiconductor. Optical analyses show enhanced absorption and refractive properties in the visible spectrum, vital for efficient light harvesting. SCAPS-1D simulations indicate a PCE of 22.79% for CsSnCl3 based solar cell, with optimal absorber thickness at 1300 nm. The results demonstrate that Sb doping addresses the stability issues of tin-based perovskites while enhancing their photovoltaic performance, paving the way for sustainable, lead-free solar technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信