{"title":"掺锑CsSnCl3卤化物钙钛矿的计算研究:对结构、电子、光学和光伏性能分析的见解","authors":"Mekuria Tsegaye Alemu , Derje Fufa Hirpa , Kingsley Onyebuchi Obodo , Chernet Amente Gefe","doi":"10.1016/j.cocom.2025.e01045","DOIUrl":null,"url":null,"abstract":"<div><div>Antimony (Sb)-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> halide perovskites have emerged as promising candidates for lead-free perovskite solar cells due to their enhanced stability and tunable optoelectronic properties. This study employs first-principles Density Functional Theory (DFT) calculations to investigate the structural, electronic, optical properties of pristine and Sb-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and SCAPS-1D simulations to investigate the photovoltaic characteristics of CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Structural optimizations reveal stable lattice configurations, with doping slightly expanding the lattice parameters. Sb doping significantly widens the bandgap from 0.95 eV (pristine) to 1.93 eV (3.7% doping) transitioning the material to an n-type semiconductor. Optical analyses show enhanced absorption and refractive properties in the visible spectrum, vital for efficient light harvesting. SCAPS-1D simulations indicate a PCE of 22.79% for CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> based solar cell, with optimal absorber thickness at 1300 nm. The results demonstrate that Sb doping addresses the stability issues of tin-based perovskites while enhancing their photovoltaic performance, paving the way for sustainable, lead-free solar technologies.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"43 ","pages":"Article e01045"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational investigation of antimony-doped CsSnCl3 halide perovskites: Insights into structural, electronic, optical, and photovoltaic performance analysis\",\"authors\":\"Mekuria Tsegaye Alemu , Derje Fufa Hirpa , Kingsley Onyebuchi Obodo , Chernet Amente Gefe\",\"doi\":\"10.1016/j.cocom.2025.e01045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimony (Sb)-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> halide perovskites have emerged as promising candidates for lead-free perovskite solar cells due to their enhanced stability and tunable optoelectronic properties. This study employs first-principles Density Functional Theory (DFT) calculations to investigate the structural, electronic, optical properties of pristine and Sb-doped CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and SCAPS-1D simulations to investigate the photovoltaic characteristics of CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Structural optimizations reveal stable lattice configurations, with doping slightly expanding the lattice parameters. Sb doping significantly widens the bandgap from 0.95 eV (pristine) to 1.93 eV (3.7% doping) transitioning the material to an n-type semiconductor. Optical analyses show enhanced absorption and refractive properties in the visible spectrum, vital for efficient light harvesting. SCAPS-1D simulations indicate a PCE of 22.79% for CsSnCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> based solar cell, with optimal absorber thickness at 1300 nm. The results demonstrate that Sb doping addresses the stability issues of tin-based perovskites while enhancing their photovoltaic performance, paving the way for sustainable, lead-free solar technologies.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"43 \",\"pages\":\"Article e01045\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325000449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Computational investigation of antimony-doped CsSnCl3 halide perovskites: Insights into structural, electronic, optical, and photovoltaic performance analysis
Antimony (Sb)-doped CsSnCl halide perovskites have emerged as promising candidates for lead-free perovskite solar cells due to their enhanced stability and tunable optoelectronic properties. This study employs first-principles Density Functional Theory (DFT) calculations to investigate the structural, electronic, optical properties of pristine and Sb-doped CsSnCl, and SCAPS-1D simulations to investigate the photovoltaic characteristics of CsSnCl. Structural optimizations reveal stable lattice configurations, with doping slightly expanding the lattice parameters. Sb doping significantly widens the bandgap from 0.95 eV (pristine) to 1.93 eV (3.7% doping) transitioning the material to an n-type semiconductor. Optical analyses show enhanced absorption and refractive properties in the visible spectrum, vital for efficient light harvesting. SCAPS-1D simulations indicate a PCE of 22.79% for CsSnCl based solar cell, with optimal absorber thickness at 1300 nm. The results demonstrate that Sb doping addresses the stability issues of tin-based perovskites while enhancing their photovoltaic performance, paving the way for sustainable, lead-free solar technologies.