用aptes功能化的生物活性玻璃纳米粒子增强PCL生物聚合物的力学性能:分子动力学研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Majid Sohrabian , Sara Ranjbareslamloo , Behrouz Arab , Majid Vaseghi
{"title":"用aptes功能化的生物活性玻璃纳米粒子增强PCL生物聚合物的力学性能:分子动力学研究","authors":"Majid Sohrabian ,&nbsp;Sara Ranjbareslamloo ,&nbsp;Behrouz Arab ,&nbsp;Majid Vaseghi","doi":"10.1016/j.commatsci.2025.113930","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamics (MD) simulations were used to evaluate the mechanical properties of Polycaprolactone (PCL) reinforced with APTES-functionalized Bioactive Glass (f-BG) nanoparticles. APTES functionalization enhanced polymer-reinforcement interactions and mitigated nanoparticle agglomeration, which often degrades performance. The Design of Experiments (DOE) method predicted trends and optimized particle size and weight fraction to maximize mechanical performance. Simulated tensile loading provided stress–strain curves, revealing that increasing nanoparticle fraction or decreasing particle size improved properties. Surface modification significantly delayed agglomeration at high nanoparticle loadings. The optimal composition, with an elastic modulus of 641.51 MPa, was PCL with 29.11 wt% f-BG nanoparticles of 7.76 Å. This study emphasizes the importance of surface modification in enhancing mechanical performance and mitigating agglomeration in PCL/f-BG nanocomposites through MD simulations.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"255 ","pages":"Article 113930"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mechanical properties of PCL Biopolymers with APTES-Functionalized Bioactive Glass Nanoparticles: A molecular dynamics study\",\"authors\":\"Majid Sohrabian ,&nbsp;Sara Ranjbareslamloo ,&nbsp;Behrouz Arab ,&nbsp;Majid Vaseghi\",\"doi\":\"10.1016/j.commatsci.2025.113930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular dynamics (MD) simulations were used to evaluate the mechanical properties of Polycaprolactone (PCL) reinforced with APTES-functionalized Bioactive Glass (f-BG) nanoparticles. APTES functionalization enhanced polymer-reinforcement interactions and mitigated nanoparticle agglomeration, which often degrades performance. The Design of Experiments (DOE) method predicted trends and optimized particle size and weight fraction to maximize mechanical performance. Simulated tensile loading provided stress–strain curves, revealing that increasing nanoparticle fraction or decreasing particle size improved properties. Surface modification significantly delayed agglomeration at high nanoparticle loadings. The optimal composition, with an elastic modulus of 641.51 MPa, was PCL with 29.11 wt% f-BG nanoparticles of 7.76 Å. This study emphasizes the importance of surface modification in enhancing mechanical performance and mitigating agglomeration in PCL/f-BG nanocomposites through MD simulations.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"255 \",\"pages\":\"Article 113930\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625002733\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002733","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用分子动力学(MD)模拟评价了aptes功能化生物活性玻璃(f-BG)纳米颗粒增强聚己内酯(PCL)的力学性能。APTES功能化增强了聚合物-增强物的相互作用,减轻了纳米颗粒团聚,这通常会降低性能。实验设计(DOE)方法预测趋势,优化粒度和重量分数,以最大限度地提高机械性能。模拟拉伸加载提供了应力应变曲线,表明增加纳米颗粒分数或减小颗粒尺寸可改善性能。表面改性显著延缓了高纳米颗粒负载下的团聚。最优组合为PCL,其弹性模量为641.51 MPa,含29.11 wt%的f-BG纳米颗粒为7.76 Å。本研究通过MD模拟强调了表面改性在提高PCL/f-BG纳米复合材料力学性能和减轻团聚方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing mechanical properties of PCL Biopolymers with APTES-Functionalized Bioactive Glass Nanoparticles: A molecular dynamics study

Enhancing mechanical properties of PCL Biopolymers with APTES-Functionalized Bioactive Glass Nanoparticles: A molecular dynamics study
Molecular dynamics (MD) simulations were used to evaluate the mechanical properties of Polycaprolactone (PCL) reinforced with APTES-functionalized Bioactive Glass (f-BG) nanoparticles. APTES functionalization enhanced polymer-reinforcement interactions and mitigated nanoparticle agglomeration, which often degrades performance. The Design of Experiments (DOE) method predicted trends and optimized particle size and weight fraction to maximize mechanical performance. Simulated tensile loading provided stress–strain curves, revealing that increasing nanoparticle fraction or decreasing particle size improved properties. Surface modification significantly delayed agglomeration at high nanoparticle loadings. The optimal composition, with an elastic modulus of 641.51 MPa, was PCL with 29.11 wt% f-BG nanoparticles of 7.76 Å. This study emphasizes the importance of surface modification in enhancing mechanical performance and mitigating agglomeration in PCL/f-BG nanocomposites through MD simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信