利用无人机遥感和深度学习技术提高玉米LAI估计精度

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zhen Chen , Weiguang Zhai , Qian Cheng
{"title":"利用无人机遥感和深度学习技术提高玉米LAI估计精度","authors":"Zhen Chen ,&nbsp;Weiguang Zhai ,&nbsp;Qian Cheng","doi":"10.1016/j.aiia.2025.04.008","DOIUrl":null,"url":null,"abstract":"<div><div>The leaf area index (LAI) is crucial for precision agriculture management. UAV remote sensing technology has been widely applied for LAI estimation. Although spectral features are widely used for LAI estimation, their performance is often constrained in complex agricultural scenarios due to interference from soil background reflectance, variations in lighting conditions, and vegetation heterogeneity. Therefore, this study evaluates the potential of multi-source feature fusion and convolutional neural networks (CNN) in estimating maize LAI. To achieve this goal, field experiments on maize were conducted in Xinxiang City and Xuzhou City, China. Subsequently, spectral features, texture features, and crop height were extracted from the multi-spectral remote sensing data to construct a multi-source feature dataset. Then, maize LAI estimation models were developed using multiple linear regression, gradient boosting decision tree, and CNN. The results showed that: (1) Multi-source feature fusion, which integrates spectral features, texture features, and crop height, demonstrated the highest accuracy in LAI estimation, with the R<sup>2</sup> ranging from 0.70 to 0.83, the RMSE ranging from 0.44 to 0.60, and the rRMSE ranging from 10.79 % to 14.57 %. In addition, the multi-source feature fusion demonstrates strong adaptability across different growth environments. In Xinxiang, the R<sup>2</sup> ranges from 0.76 to 0.88, the RMSE ranges from 0.35 to 0.50, and the rRMSE ranges from 8.73 % to 12.40 %. In Xuzhou, the R<sup>2</sup> ranges from 0.60 to 0.83, the RMSE ranges from 0.46 to 0.71, and the rRMSE ranges from 10.96 % to 17.11 %. (2) The CNN model outperformed traditional machine learning algorithms in most cases. Moreover, the combination of spectral features, texture features, and crop height using the CNN model achieved the highest accuracy in LAI estimation, with the R<sup>2</sup> ranging from 0.83 to 0.88, the RMSE ranging from 0.35 to 0.46, and the rRMSE ranging from 8.73 % to 10.96 %.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 3","pages":"Pages 482-495"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing maize LAI estimation accuracy using unmanned aerial vehicle remote sensing and deep learning techniques\",\"authors\":\"Zhen Chen ,&nbsp;Weiguang Zhai ,&nbsp;Qian Cheng\",\"doi\":\"10.1016/j.aiia.2025.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The leaf area index (LAI) is crucial for precision agriculture management. UAV remote sensing technology has been widely applied for LAI estimation. Although spectral features are widely used for LAI estimation, their performance is often constrained in complex agricultural scenarios due to interference from soil background reflectance, variations in lighting conditions, and vegetation heterogeneity. Therefore, this study evaluates the potential of multi-source feature fusion and convolutional neural networks (CNN) in estimating maize LAI. To achieve this goal, field experiments on maize were conducted in Xinxiang City and Xuzhou City, China. Subsequently, spectral features, texture features, and crop height were extracted from the multi-spectral remote sensing data to construct a multi-source feature dataset. Then, maize LAI estimation models were developed using multiple linear regression, gradient boosting decision tree, and CNN. The results showed that: (1) Multi-source feature fusion, which integrates spectral features, texture features, and crop height, demonstrated the highest accuracy in LAI estimation, with the R<sup>2</sup> ranging from 0.70 to 0.83, the RMSE ranging from 0.44 to 0.60, and the rRMSE ranging from 10.79 % to 14.57 %. In addition, the multi-source feature fusion demonstrates strong adaptability across different growth environments. In Xinxiang, the R<sup>2</sup> ranges from 0.76 to 0.88, the RMSE ranges from 0.35 to 0.50, and the rRMSE ranges from 8.73 % to 12.40 %. In Xuzhou, the R<sup>2</sup> ranges from 0.60 to 0.83, the RMSE ranges from 0.46 to 0.71, and the rRMSE ranges from 10.96 % to 17.11 %. (2) The CNN model outperformed traditional machine learning algorithms in most cases. Moreover, the combination of spectral features, texture features, and crop height using the CNN model achieved the highest accuracy in LAI estimation, with the R<sup>2</sup> ranging from 0.83 to 0.88, the RMSE ranging from 0.35 to 0.46, and the rRMSE ranging from 8.73 % to 10.96 %.</div></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"15 3\",\"pages\":\"Pages 482-495\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721725000480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

叶面积指数(LAI)是精准农业管理的重要指标。无人机遥感技术在LAI估算中得到了广泛的应用。虽然光谱特征被广泛用于LAI估算,但由于土壤背景反射率、光照条件变化和植被异质性的干扰,其性能在复杂的农业场景下往往受到限制。因此,本研究评估了多源特征融合和卷积神经网络(CNN)在估计玉米LAI中的潜力。为实现这一目标,在中国新乡市和徐州市进行了玉米田间试验。随后,从多光谱遥感数据中提取光谱特征、纹理特征和作物高度,构建多源特征数据集。然后,利用多元线性回归、梯度增强决策树和CNN建立玉米LAI估计模型。结果表明:(1)融合光谱特征、纹理特征和作物高度的多源特征融合对LAI的估计精度最高,R2范围为0.70 ~ 0.83,RMSE范围为0.44 ~ 0.60,rRMSE范围为10.79% ~ 14.57%。此外,多源特征融合对不同生长环境具有较强的适应性。新乡市R2范围为0.76 ~ 0.88,RMSE范围为0.35 ~ 0.50,rRMSE范围为8.73% ~ 12.40%。徐州地区R2范围为0.60 ~ 0.83,RMSE范围为0.46 ~ 0.71,rRMSE范围为10.96% ~ 17.11%。(2) CNN模型在大多数情况下优于传统机器学习算法。此外,利用CNN模型组合光谱特征、纹理特征和作物高度估算LAI的精度最高,R2范围为0.83 ~ 0.88,RMSE范围为0.35 ~ 0.46,rRMSE范围为8.73% ~ 10.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing maize LAI estimation accuracy using unmanned aerial vehicle remote sensing and deep learning techniques
The leaf area index (LAI) is crucial for precision agriculture management. UAV remote sensing technology has been widely applied for LAI estimation. Although spectral features are widely used for LAI estimation, their performance is often constrained in complex agricultural scenarios due to interference from soil background reflectance, variations in lighting conditions, and vegetation heterogeneity. Therefore, this study evaluates the potential of multi-source feature fusion and convolutional neural networks (CNN) in estimating maize LAI. To achieve this goal, field experiments on maize were conducted in Xinxiang City and Xuzhou City, China. Subsequently, spectral features, texture features, and crop height were extracted from the multi-spectral remote sensing data to construct a multi-source feature dataset. Then, maize LAI estimation models were developed using multiple linear regression, gradient boosting decision tree, and CNN. The results showed that: (1) Multi-source feature fusion, which integrates spectral features, texture features, and crop height, demonstrated the highest accuracy in LAI estimation, with the R2 ranging from 0.70 to 0.83, the RMSE ranging from 0.44 to 0.60, and the rRMSE ranging from 10.79 % to 14.57 %. In addition, the multi-source feature fusion demonstrates strong adaptability across different growth environments. In Xinxiang, the R2 ranges from 0.76 to 0.88, the RMSE ranges from 0.35 to 0.50, and the rRMSE ranges from 8.73 % to 12.40 %. In Xuzhou, the R2 ranges from 0.60 to 0.83, the RMSE ranges from 0.46 to 0.71, and the rRMSE ranges from 10.96 % to 17.11 %. (2) The CNN model outperformed traditional machine learning algorithms in most cases. Moreover, the combination of spectral features, texture features, and crop height using the CNN model achieved the highest accuracy in LAI estimation, with the R2 ranging from 0.83 to 0.88, the RMSE ranging from 0.35 to 0.46, and the rRMSE ranging from 8.73 % to 10.96 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信